

CE 319 F Daene McKinney

Elementary Mechanics of Fluids

Control Volumes

Approaches to Solving Fluids Problems

- Experimental Analysis
- Differential Analysis
- Control Volume Analysis
 - Single most valuable tool available (White, Ch. 3)

Systems

- Laws of Mechanics
 - Written for systems
 - System = arbitrary quantity of mass of fixed identity
 - Fixed quantity of mass, m

- Conservation of Mass
 - Mass is conserved and does not change

$$\frac{dm}{dt} = 0$$

- Momentum
 - If surroundings exert force on system, mass will accelerate

$$\vec{F} = \frac{d(m\vec{V})}{dt}$$

- Energy
 - If heat is added to system or work is done by system, energy will change

$$\frac{dE}{dt} = \frac{dQ}{dt} - \frac{dW}{dt}$$

Control Volumes

- Solid Mechanics
 - Follow the system, determine what happens to it
- Fluid Mechanics
 - Consider the behavior in a specific region or Control Volume
- Convert System approach to CV approach
 - Look at specific regions, rather than specific masses
- Reynolds Transport Theorem
 - Relates time derivative of system properties to rate of change of property in CV

$$B = \int_{CV} bdm = \int_{CV} b\rho d\forall$$

= mass, momentum, energy (extensive)

$$b = \frac{dB}{dm}$$

= amount of B per unit mass (intensive)

CV Inflow & Outflow

$$Q = \vec{V} \cdot \vec{A}$$

Area vector always points outward from CV

$$\begin{aligned} Q_{out} - Q_{in} &= V_2 A_2 - V_1 A_1 \\ &= \vec{V}_2 \vec{A}_2 - \vec{V}_1 \cdot \vec{A}_1 \\ &= \sum_{CS} \vec{V} \cdot \vec{A} \end{aligned}$$

CV Inflow & Outflow

$$b\dot{m} = \dot{B}$$

$$\dot{B}_{net} = \dot{B}_{out} - \dot{B}_{in} = b\dot{m}_{out} - b\dot{m}_{in} = \sum_{CS} b\rho \vec{V} \cdot \vec{A} = \sum_{CS} b\dot{m}$$

$$M_{sys,t+\Delta t} = M_{CV,t+\Delta t} + \Delta M_{out} - \Delta M_{in}$$

$$B_{Sys,t+\Delta t} = B_{CV,t+\Delta t} + \Delta B_{out} - \Delta B_{in}$$

Reynolds Transport Theorem

$$\frac{dB_{sys}}{dt} = \lim_{\Delta t \to 0} \frac{B_{t+\Delta t} - B_{CV,t}}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{B_{CV,t+\Delta t} + \Delta B_{out} - \Delta B_{in} - B_{CV,t}}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{B_{CV,t+\Delta t} - B_{CV,t}}{\Delta t} + \lim_{\Delta t \to 0} \frac{\Delta B_{out} - \Delta B_{in}}{\Delta t}$$

$$= \frac{dB_{CV}}{dt} + \dot{B}_{net}$$
Upstream

$$\frac{dB_{sys}}{dt} = \frac{d}{dt} \int_{CV} b\rho d \nabla + \sum_{CS} b\rho \vec{V} \cdot \vec{A}$$

Steady vs. Unsteady CV

$$\frac{dB_{sys}}{dt} = \frac{d}{dt} \int_{CV} b\rho d\nabla + \sum_{CS} b\rho \vec{V} \cdot \vec{A} \qquad \qquad \frac{dB_{sys}}{dt} = \sum_{CS} b\rho \vec{V} \cdot \vec{A}$$

$$\frac{dB_{sys}}{dt} = \sum_{CS} b\rho \vec{V} \cdot \vec{A}$$

Continuity Equation

• Reynolds Transport Theorem

$$B = M_{SVS}$$
 (extensive)

$$b = \frac{dB}{dm} = \frac{dM_{sys}}{dm} = 1 \text{(intensive)}$$

$$\frac{dB_{sys}}{dt} = \frac{d}{dt} \int_{CV} b\rho d\nabla + \sum_{CS} b\rho \vec{V} \cdot \vec{A}$$

$$0 = \frac{d}{dt} \int_{CV} \rho d \nabla + \sum_{CS} \rho \vec{V} \cdot \vec{A}$$

Unsteady Case

$$0 = \sum_{CS} \rho \vec{V} \cdot \vec{A}$$

Steady Case

Example (4.57)

• Continuity equation

$$0 = \frac{d}{dt} \int \rho d\forall + \sum_{CS} \rho \vec{V} \cdot \vec{A}$$

$$= \frac{d}{dt} (\rho A_{tank} h) - \rho V_{in} A_{in} + \rho V_{out} A_{out}$$

$$= A_{tank} \frac{dh}{dt} - V_{in} A_{in} + V_{out} A_{out}$$

$$= 0.1 * 0.1 \times 10^{-2} - V_{in} (0.0025) + \sqrt{2g * 1} (0.0025)$$

$$V_{in} = 4.47 \, m/s$$

Example (4.61)

- Select a CV that moves up and down with the water surface
- Continuity Equation

$$0 = \frac{d}{dt} \int_{CV} \rho d \forall + \sum_{CS} \rho \vec{V} \cdot \vec{A}$$

$$0 = \frac{d}{dt} \int_{CV} \rho d \forall + \rho 2V_B A_A - \rho V_B A_B$$

$$A_A = \frac{\pi}{4} 3^2; A_B = \frac{\pi}{4} 6^2; A_A = \frac{1}{4} A_B$$

$$0 = A \frac{dh}{dt} + 2V_B (\frac{1}{4} A_B) - V_B A_B$$

$$A \frac{dh}{dt} = \frac{1}{2} V_B A_B > 0 \quad \therefore \text{ surface is rising}$$
6 in.

HW (4.80)

HW (4.81)

HW (4.82)

