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Control Volumes




Approaches to Solving Fluids
Problems

* Experimental Analysis
» Differential Analysis

e Control Volume Analysis
— Single most valuable tool available (White, Ch. 3)



Laws of Mechanics

Written for systems

mass of fixed identity

Fixed quantity of mass, m

Conservation of Mass

— Mass 1s conserved and
does not change

System = arbitrary quantity of

System
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* Energy
— If heat 1s added to

If surroundings
exert force on
system, mass
will accelerate

system or work is
done by system,
energy will change
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Control Volumes

Solid Mechanics

— Follow the system, determine
what happens to it

Fluid Mechanics

— Consider the behavior in a
specific region or Control
Volume

Convert System approach to
CV approach

— Look at specific regions, rather
than specific masses

Reynolds Transport Theorem

— Relates time derivative of
system properties to rate of
change of property in CV
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CV Intlow & Outtlow

O=V-A

Area vector always points
outward from CV

Qout = Oin =Vo 4y =114
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CV Intlow & Outtlow
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Reynolds Transport Theorem

dBgys lim Biiae = Bey g

dt At—0 At
Bey pear +AByy —ABjy, — Bey 4

At—0 At
Bey ivar —Bev + 1im AB,,; —AB;,
At—0 At At—0 At

net
dt Downstream

Upstream -
section  AM;, Control surface section AM,y,

ffffffff

Control

System boundary at surface

System boundary at time ¢+ At
time ¢



Steady vs. Unsteady CV

Fixed control surface Control surface moving with ship
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Continuity Equation

* Reynolds Transport Theorem

B =M, (extensive)
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Example (4.57)

Continuity equation

():i [pdV+ 3 pV-A
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Example (4.61)
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HW (4.80)

Closed tank
| ¢

l A —
il !
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HW (4.81)




HW (4.82)

¥=10m3
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