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River Basin Management

Precipitation, Temperature, Humidity, Streamflow
Water Quality, Groundwater, Snow pack,
Evapotranspiration

Infrastructure control, Institutiona
policies & incentives _ o
Warnings, Alarms &

Data
Measurement

Decision
Implementation

Decision
Support

Processing &
Archiving

« Database
=, Data model
Data display

Operating rules |

Expert system

Optimization, Warnings
Risk management, Dispute Resolution

* Flooding, Hydraulics, Water Allocation,
Water Pollution, Environmental Flows




Water Resources Planning and
Management

Identification, formulation and analysis of projects and
designs

Based on scientific, legal, ethical, economic, ..., concepts
Problems Considered

— Municipal and industrial supply
— lrrigation

— Flood control

— Hydroelectric power

— Navigation

— Water quality

— Recreation

— Fisheries

— Drainage & sediment control

— Preservation and enhancement of natural water areas,
ecological diversity, archeology, etc



Water Resource Systems Analysis

 Water resources problems are

— Complex, interconnected, and overlapping

— Involving water allocations, economic development, and
environmental preservation

e Systems analysis

— Break complex system down into components and analyze
the interactions between the components

— Central method used in water resources planning



Parameters, 3

Inputs, I >

Policies or controls, a

System

Transformation function

Q(t) = Q(a, B) * I(1)

Some Systems:
Watershed
Aquifer
Development Area
Detention Basin

Outputs, Q




System Transformation Function
Q(t) = Q(a, B) * I(t)
* Mathematical model
« Typically a set of algebraic equations

* Derived from differential equations of
— Conservation of Mass (e.g., continuity)
— Conservation of Momentum (e.g., Manning)
— Conservation of Energy (e.g., friction loss)



System Characteristics

Linear vs nonlinear

— Linear - superposition is valid
e If I, > Q, and l, 2 Q,
e Then |, +,> Q; + Q,

Lumped vs distributed parameter (spatially
varying)

Steady-state vs transient (time dependent)
Deterministic vs stochastic (random)
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Hydrologic Processes
(Precipitation, Evaporation, Infiltration, Runoff)

 Transform the distribution of

Atmospheric Moisture ’
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 Laws of Mechanics
— Written for systems

— System = arbitrary quantity
of mass of fixed identity

— Fixed gquantity of mass, m R

(a) (b)

« Conservation of e Momentum  Energy
Mass — If surroundings — If heat is added
— Mass is conserved exert force on to system or
and does not change system, mass work is done by
will accelerate system, energy
will change
dm - / de dQ dw
0 e _d(mv) _dQ

dt dt dt  dt dt



Control Volumes

Solid Mechanics

— Follow the system,
determine what happens to
it

Fluid Mechanics
— Consider the behavior in a

specific region or Control
Volume

Convert System approach to
CV approach

— Look at specific regions,
rather than specific masses

Reynolds Transport
Theorem
— Relates time derivative of

system properties to rate of
change of property in CV

System

Control
/st?r:arcoe\

Time ¢ Time ¢ + At
(a) (h)

B= [Adm=[fpdV

CV CV
= mass, momentum,energy (extensive)
dB
p=
m

= amountof B per unit mass (intensive)



Reynolds Transport Theorem

Upstream Downs‘_[ream
section AM;, Control surface section AM,

Control
System boundary at surface
SYSermtit;rC]’gr:dafy at time ¢ + At
aB _ lim (Byy + By )t+At ~(By + By )t
dt  At—0 At
_ lim (Bt )y at = (B )y +(B||| Joat —(Br
At—0 Al At
dB_d

E—ac{j\j/ﬂpdV+éjSﬁpV-dA




Continuity Equation
(Conservation of Mass)

B=M massof the system; 3 = dN%m =1

B _ 9 1oy + [[ oV -dA g 0= [ pdV -+ [[ VA
dt  dtgy s dtcy CS

If p=constant

9 v+ V-dA=0
dtcy s

dS
E+Q(t)—l(t)=0

dS
e | (t) —Q(t) Inflow — Outflow = Change in Storage




Discrete Time Continuity

3 3 &3
_ _ Units of each term = :
> =10-Q0) + Cog)

ds = I (t)dt — Q(t)dt

Sj jAt jAt
[dS=[I(t)dt— [Q(t)dt

Sia (-DAt  (j-Dat

Sj—Sju=1;-0Q; Units of each term = L3 (m3, t%)

5. —§. L+ |. — Q | Volume of water in storage at the end of the next time
) - J J period At, Sj, equals the volume in storage at the beginning

of that period, 5]._1, plus the volume of inflow, Ij_1, minus the
volume of outflow, O,




Shoal Creek Flood
Memorial Day 1981

> |

e Normal flow =90 gpm
e Storm peak = 6.5 million gpm
e 13 lives lost




Shoal Creek Flood
Memorial Day 1981

6.31 in. of rain fell uniformly over 7.03 sq. mi.
What was the equivalent volume of water?

Runoff (cfs)
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Example — Shoal Creek

Given:
— Incremental precipitation over the watershed, pulse
— Streamflow measured at the outlet, continuous

Find: Storage as function of time
1
Convert streamflow to pulse data At=§ hour
o 1
Average streamflow over time interval -, (Qi +Qi1)At

11
Equivalent depth over the watershed Kg(Qi +Qip )AL

Continuity Eq. S =So+i(|i ~Qi)

i=
S0=0; S1=5S9+1g-Qp; Sp=51+11-Q



Time Time Incremental Instantaneous
Precip Streamflow
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Shoal Creek Flood

Shoal Creek at Northwest Park, Austin, Texas, May 24-25, 1981

Area=

7.03 mi2

195985152
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