### CE 374 K – Hydrology

### **Systems and Continuity**

Daene C. McKinney

#### **River Basin Management**



# Water Resources Planning and Management

- Identification, formulation and analysis of projects and designs
- Based on scientific, legal, ethical, economic, ..., concepts
- Problems Considered
  - Municipal and industrial supply
  - Irrigation
  - Flood control
  - Hydroelectric power
  - Navigation
  - Water quality
  - Recreation
  - Fisheries
  - Drainage & sediment control
  - Preservation and enhancement of natural water areas, ecological diversity, archeology, etc

### Water Resource Systems Analysis

#### Water resources problems are

- Complex, interconnected, and overlapping
- Involving water allocations, economic development, and environmental preservation

#### Systems analysis

- Break complex system down into components and analyze the interactions between the components
- Central method used in water resources planning

### System

#### Some Systems:

Watershed Aquifer Development Area Detention Basin



## System Transformation Function $Q(t) = \Omega(\alpha, \beta) * I(t)$

- Mathematical model
- Typically a set of algebraic equations
- Derived from differential equations of
  - Conservation of Mass (e.g., continuity)
  - Conservation of Momentum (e.g., Manning)
  - Conservation of Energy (e.g., friction loss)

### System Characteristics

- Linear vs nonlinear
  - Linear superposition is valid
    - If  $I_1 \rightarrow Q_1$  and  $I_2 \rightarrow Q_2$
    - Then  $I_1 + I_2 \rightarrow Q_1 + Q_2$
- Lumped vs distributed parameter (spatially varying)
- Steady-state vs transient (time dependent)
- Deterministic vs stochastic (random)



### Hydrologic Processes

(Precipitation, Evaporation, Infiltration, Runoff)

- Transform the distribution of water in the hydrologic cycle
- Governed by fundamental conservation principles
- Reynold's Transport
   Theorem allows us to derive these fundamental principles



### Systems

#### Laws of Mechanics

- Written for systems
- System = arbitrary quantity of mass of fixed identity
- Fixed quantity of mass, m



#### Conservation of Mass

 Mass is conserved and does not change

$$\frac{dm}{dt} = 0$$

#### Momentum

 If surroundings exert force on system, mass will accelerate

$$\vec{F} = \frac{d(m\vec{V})}{dt}$$

#### Energy

 If heat is added to system or work is done by system, energy will change

$$\frac{dE}{dt} = \frac{dQ}{dt} - \frac{dW}{dt}$$

### **Control Volumes**

- Solid Mechanics
  - Follow the system, determine what happens to it
- Fluid Mechanics
  - Consider the behavior in a specific region or Control Volume
- Convert System approach to CV approach
  - Look at specific regions, rather than specific masses
- Reynolds Transport Theorem
  - Relates time derivative of system properties to rate of change of property in CV



$$B = \int \beta dm = \int \beta \rho d \forall$$

$$CV \qquad CV$$

= mass, momentum, energy (extensive)

$$\beta = \frac{dB}{dm}$$

= amount of B per unit mass (intensive)

### Reynolds Transport Theorem



$$\frac{dB}{dt} = \lim_{\Delta t \to 0} \frac{(B_{II} + B_{III})_{t+\Delta t} - (B_I + B_{II})_t}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{(B_{II})_{t+\Delta t} - (B_{II})_t}{\Delta t} + \frac{(B_{III})_{t+\Delta t} - (B_I)_t}{\Delta t}$$

$$\frac{dB}{dt} = \frac{d}{dt} \iiint_{CV} \beta \rho d \forall + \iint_{CS} \beta \rho \vec{\mathbf{V}} \cdot d\vec{\mathbf{A}}$$

### Continuity Equation

(Conservation of Mass)

$$B = M$$
 mass of the system;  $\beta = \frac{dM}{dm} = 1$ 

$$\frac{dB}{dt} = \frac{d}{dt} \iiint \beta \rho d \forall + \iint \beta \rho \vec{\mathbf{V}} \cdot d\vec{\mathbf{A}} \longrightarrow 0 = \frac{d}{dt} \iiint \rho d \forall + \iint \rho \vec{\mathbf{V}} \cdot d\vec{\mathbf{A}}$$

if  $\rho = \text{constant}$ 

$$\frac{d}{dt} \iiint_{CV} d\nabla + \iint_{CS} \vec{\mathbf{V}} \cdot d\vec{\mathbf{A}} = 0$$

$$\frac{dS}{dt} + Q(t) - I(t) = 0$$

$$\frac{dS}{dt} = I(t) - Q(t)$$

Inflow – Outflow = Change in Storage

### Discrete Time Continuity

$$\frac{dS}{dt} = I(t) - Q(t)$$

$$\frac{dS}{dt} = I(t) - Q(t)$$
 Units of each term =  $\frac{L^3}{T} \left( \frac{m^3}{s}, \frac{ft^3}{s} \right)$ 

$$dS = I(t)dt - Q(t)dt$$

$$S_j - S_{j-1} = I_j - Q_j$$

Units of each term = 
$$L^3$$
 ( $m^3$ ,  $ft^3$ )

$$S_j = S_{j-1} + I_j - Q_j$$

Volume of water in storage at the end of the next time period  $\Delta t$ ,  $S_p$ , equals the volume in storage at the beginning of that period,  $S_{j-1}$ , plus the volume of inflow,  $I_{j-1}$ , minus the volume of outflow,  $Q_{i-1}$ 

### Shoal Creek Flood Memorial Day 1981



- Normal flow = 90 gpm
- Storm peak = 6.5 million gpm
- 13 lives lost



### Shoal Creek Flood Memorial Day 1981

- 6.31 in. of rain fell uniformly over 7.03 sq. mi.
- What was the equivalent volume of water?

$$6.31$$
in \*  $\frac{1$ ft}{12in \*  $7.03$  mi<sup>2</sup> \*  $(5280$  ft/mi)<sup>2</sup>

 $=103,055,525 \, \text{ft}^3 * 7.48052 \, \text{gal/ft}^3$ 

=770,908,921 gal

770 million gallons in 8 hours



### Example – Shoal Creek

- Given:
  - Incremental precipitation over the watershed, pulse
  - Streamflow measured at the outlet, continuous
- Find: Storage as function of time
- Convert streamflow to pulse data

$$\Delta t = \frac{1}{2} \text{hour}$$

Average streamflow over time interval

$$\frac{1}{2}(Q_i + Q_{i+1})\Delta t$$

Equivalent depth over the watershed

$$\frac{1}{A}\frac{1}{2}(Q_i + Q_{i+1})\Delta t$$

• Continuity Eq.

$$S_{j} = S_{0} + \sum_{i=1}^{J} (I_{i} - Q_{i})$$

$$S_0 = 0$$
;  $S_1 = S_0 + I_0 - Q_0$ ;  $S_2 = S_1 + I_1 - Q_1$ 

### **Shoal Creek Flood**



| Time<br>Interval | Time | Incremental<br>Precip | Instantaneous<br>Streamflow | Incremental<br>Streamflow | Incremental<br>Storage | Cumulative<br>Storage | (.,                                              |
|------------------|------|-----------------------|-----------------------------|---------------------------|------------------------|-----------------------|--------------------------------------------------|
| j                | t    | $I_{j}$               | Q(t)                        | Qj                        | $\Delta S_{j}$         | S <sub>i</sub>        | $\Delta S = S_1 - S_0$                           |
| ·                | hr   | in                    | cfs                         | in                        | in                     | in                    | $\Delta S = S_1 - S_0$                           |
|                  | 0.0  | 0                     | 203                         |                           |                        | 0.00                  |                                                  |
| 1                | 0.5  | 0.15                  | $I_1$ 246                   | 0.02                      | $Q_1$ (0.13)           | 0.13                  |                                                  |
| 2                | 1.0  | 0.26                  | 283                         | 0.03                      | 0.23                   | 0.36                  |                                                  |
| 3                | 1.5  | 1.33                  | 828                         | 0.06                      | 1.27                   | 1.62                  |                                                  |
| 4                | 2.0  | 2.20                  | 2323                        | 0.17                      | 2.03                   | 3.65                  |                                                  |
| 5                | 2.5  | 2.08                  | 5697                        | 0.44                      | 1.64                   | 5.29                  | C C + I C                                        |
| 6                | 3.0  | 0.20                  | 9531                        | 0.84                      | -0.64                  | 4.65                  | $S_2 = S_1 + I_1 - Q_1$                          |
| 7                | 3.5  | 0.09                  | 11025                       | 1.13                      | -1.04                  | 3.61                  |                                                  |
| 8                | 4.0  | 0.00                  | 8234                        | 1.06                      | -1.06                  | 2.55                  |                                                  |
| 9                | 4.5  | 0.00                  | 4321                        | 0.69                      | -0.69                  | 1.85                  |                                                  |
| 10               | 5.0  | 0.00                  | 2246                        | 0.36                      | -0.36                  | 1.49                  | i                                                |
| 11               | 5.5  | 0.00                  | 1802                        | 0.22                      | -0.22                  | 1.27                  | $S = S + \sum_{i} (I - O_i)$                     |
| 12               | 6.0  | 0.00                  | 1230                        | 0.17                      | -0.17                  | 1.10                  | $S_{j} = S_{0} + \sum_{i=1}^{j} (I_{i} - Q_{i})$ |
| 13               | 6.5  | 0.00                  | 713                         | 0.11                      | -0.11                  | 1.00                  | i=1                                              |
| 14               | 7.0  | 0.00                  | 394                         | 0.06                      | -0.06                  | 0.93                  |                                                  |
| 15               | 7.5  | 0.00                  | 354                         | 0.04                      | -0.04                  | 0.89                  |                                                  |
| 16               | 8.0  | 0.00                  | 303                         | 0.04                      | -0.04                  | 0.86                  |                                                  |
|                  |      | 6.31                  |                             |                           |                        |                       |                                                  |

### **Shoal Creek Flood**

Shoal Creek at Northwest Park, Austin, Texas, May 24-25, 1981 Area= 7.03 mi2 195985152

| Time     | Time | Incremental | Instantaneous | Incremental | Incremental  | Cumulative |
|----------|------|-------------|---------------|-------------|--------------|------------|
| Interval |      | Precip      | Streamflow    | Streamflow  | Storage      | Storage    |
| j        | t    | $I_{j}$     | Q(t)          | Qj          | $\Delta S_j$ | $S_{j}$    |
|          | hr   | in          | cfs           | in          | in           | in         |
|          | 0.0  | 0           | 203           |             |              | 0.00       |
| 1        | 0.5  | 0.15        | 246           | 0.02        | 0.13         | 0.13       |
| 2        | 1.0  | 0.26        | 283           | 0.03        | 0.23         | 0.36       |
| 3        | 1.5  | 1.33        | 828           | 0.06        | 1.27         | 1.62       |
| 4        | 2.0  | 2.20        | 2323          | 0.17        | 2.03         | 3.65       |
| 5        | 2.5  | 2.08        | 5697          | 0.44        | 1.64         | 5.29       |
| 6        | 3.0  | 0.20        | 9531          | 0.84        | -0.64        | 4.65       |
| 7        | 3.5  | 0.09        | 11025         | 1.13        | -1.04        | 3.61       |
| 8        | 4.0  | 0.00        | 8234          | 1.06        | -1.06        | 2.55       |
| 9        | 4.5  | 0.00        | 4321          | 0.69        | -0.69        | 1.85       |
| 10       | 5.0  | 0.00        | 2246          | 0.36        | -0.36        | 1.49       |
| 11       | 5.5  | 0.00        | 1802          | 0.22        | -0.22        | 1.27       |
| 12       | 6.0  | 0.00        | 1230          | 0.17        | -0.17        | 1.10       |
| 13       | 6.5  | 0.00        | 713           | 0.11        | -0.11        | 1.00       |
| 14       | 7.0  | 0.00        | 394           | 0.06        | -0.06        | 0.93       |
| 15       | 7.5  | 0.00        | 354           | 0.04        | -0.04        | 0.89       |
| 16       | 8.0  | 0.00        | 303           | 0.04        | -0.04        | 0.86       |
|          |      | 6.31        |               |             |              |            |

