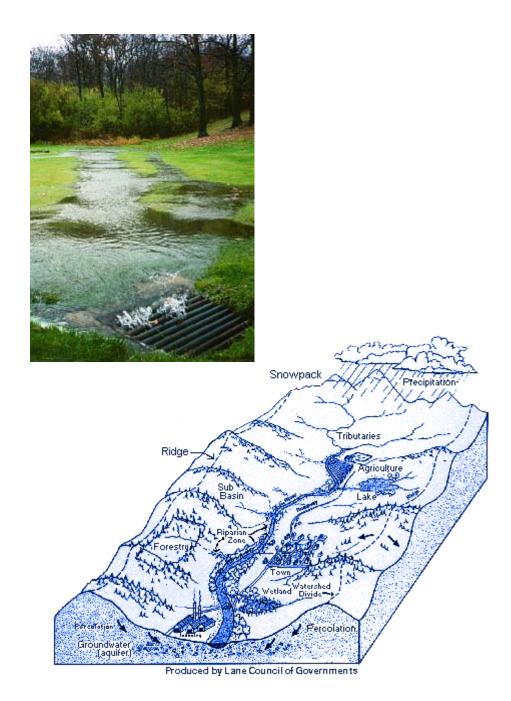
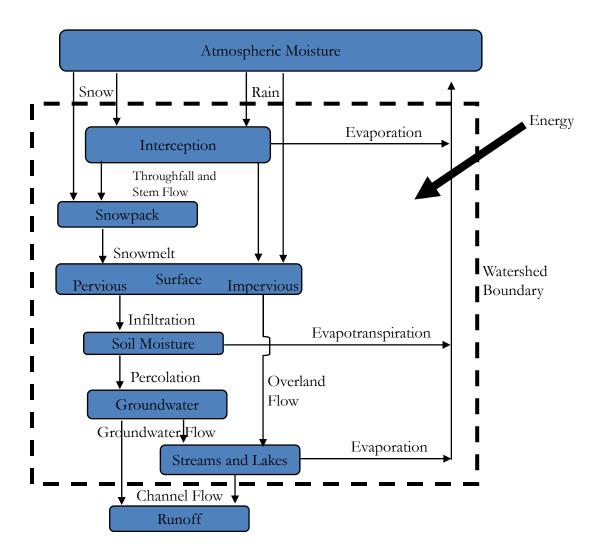
# CE 374 K – Hydrology

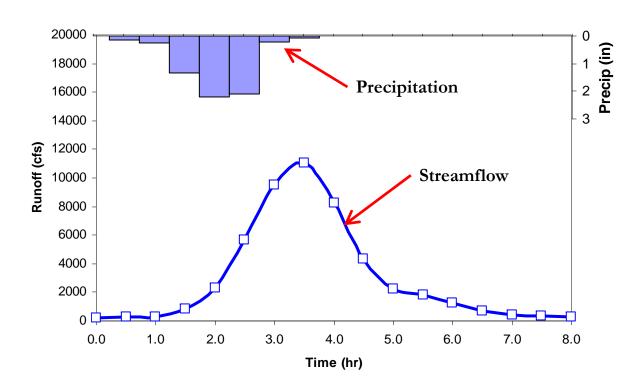

#### **Runoff Processes**

Daene C. McKinney

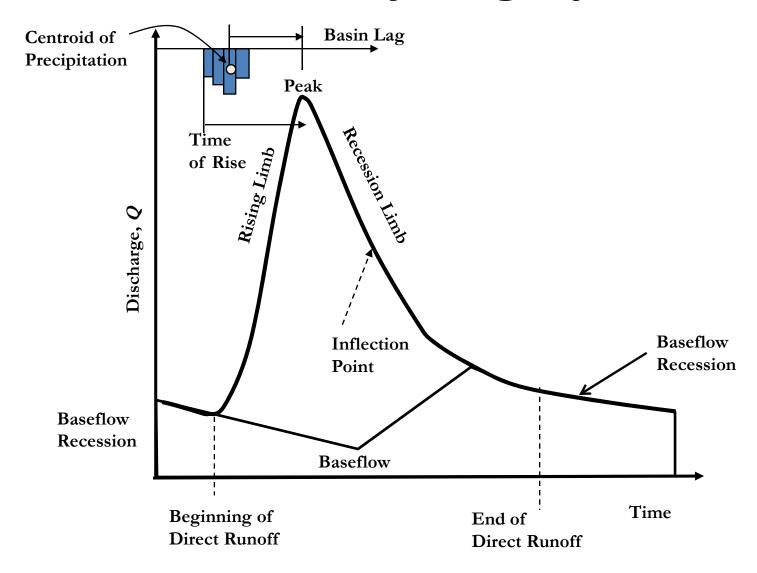
### Watershed


#### Watershed

- Area draining to a stream
- Streamflow generated by water entering surface channels
- Affected by
  - Physical, vegetative, and climatic features
  - Geologic considerations
  - Stream Patterns
- Dry periods
  - Flow sustained from groundwater (baseflow)




### Streamflow


- Atmospheric Water
  - Evapotranspiration
  - Precipitation
- Subsurface Water
  - Infiltration
  - Groundwater
- Surface Water



## **Shoal Creek Flood - 1981**



# **Streamflow Hydrograph**



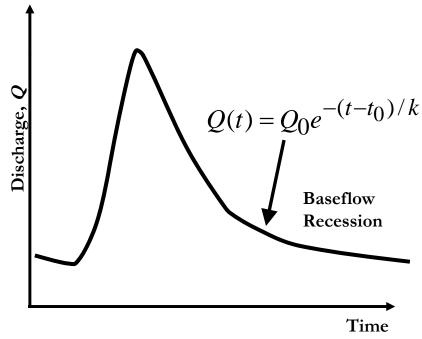
### **Volume of Storm Runoff**

- Depends on several factors
  - Large watersheds previous storm events
  - Small watersheds independent of previous storm
- Rainfall available for runoff 3 parts
  - Direct runoff
  - Initial loss (before direct runoff begins)
  - Continuing loss (after direct runoff)

## **Baseflow Separation**

- Depletion of groundwater during this period
- Continuity equation

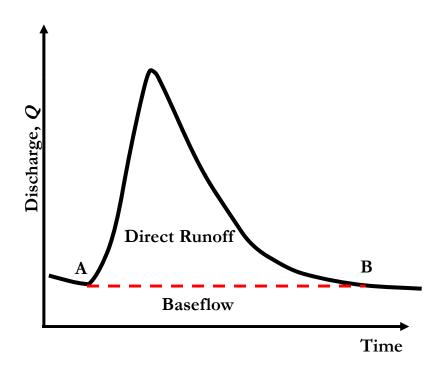
$$\frac{dS}{dt} = I(t) - Q(t)$$


$$dS = -Q_0 e^{-(t-t_0)/k} dt$$

$$S(t) = kQ(t)$$

Q(t) = flow at time t

 $Q_0$  = flow at time  $t_0$ 

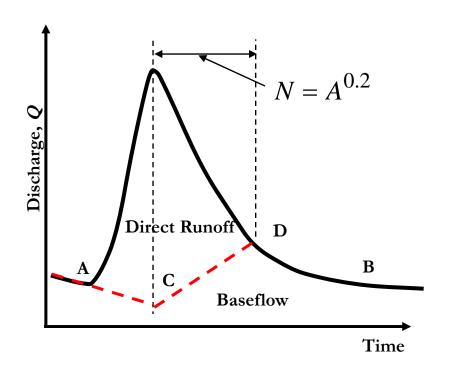

k = decay constant[T]



## **Baseflow Separation Techniques**

#### Straight – line method

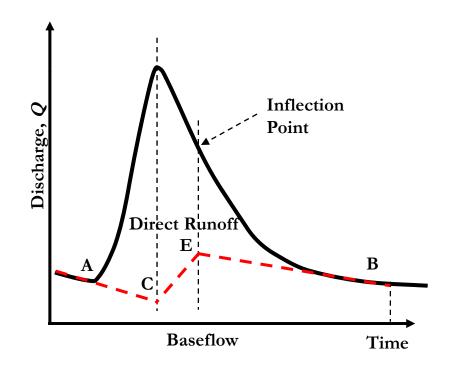
 Draw a horizontal line segment (A-B) from beginning of runoff to intersection with recession curve




## **Baseflow Separation Techniques**

#### Fixed Base Method

- Draw line segment (A C)
   extending baseflow
   recession to a point directly
   below the hydrograph peak
- Draw line segment (C-D)
   connecting a point N time
   periods after the peak


$$N = A^{0.2}$$



## **Baseflow Separation Techniques**

#### Variable Slope Method

- Draw line segment (A-C)
   extending baseflow
   recession to a point
   directly below the
   hydrograph peak
- Draw line segment (B-E)
   extending baseflow
   recession backward to a
   point directly below the
   inflection point
- Draw line segment (C-E)



### **Loss Estimation: Phi – Index Method**

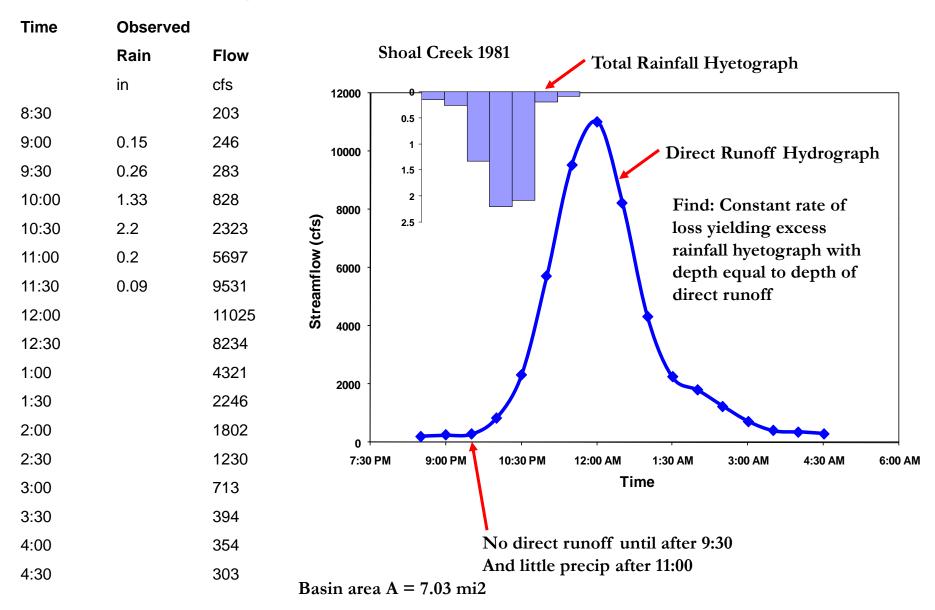
- Effective (excess) rainfall
  - Rainfall that is not retained or infiltrated
  - Becomes direct runoff
  - Excess rainfall hyetograph (excess rainfall vs time)
- Losses (abstraction )
  - Difference between total and excess rainfall hyetographs
- Phi Index
  - Constant rate of loss yielding excess rainfall hyetograph with depth equal to depth of direct runoff

$$r_d = \sum_{m=1}^{M} (R_m - \phi \Delta t)$$

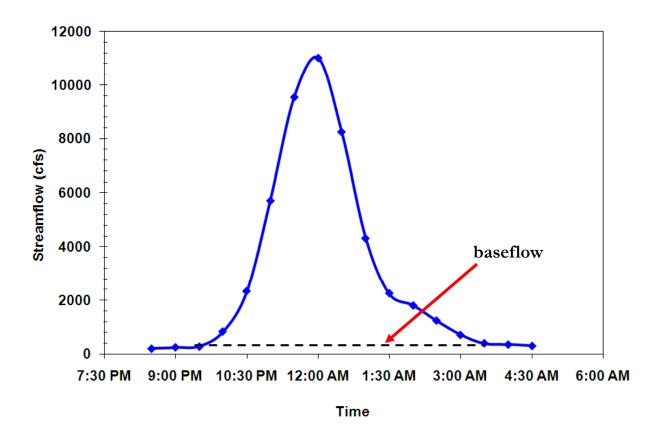
 $r_d$  = depth of direct runoff

 $R_m$  = observed rainfall

 $\phi$  = Phi index


*M* =#intervals of rainfall

contributing to direct runoff


 $\Delta t = \text{time interval}$ 

m = interval index

## Example – Phi Index method



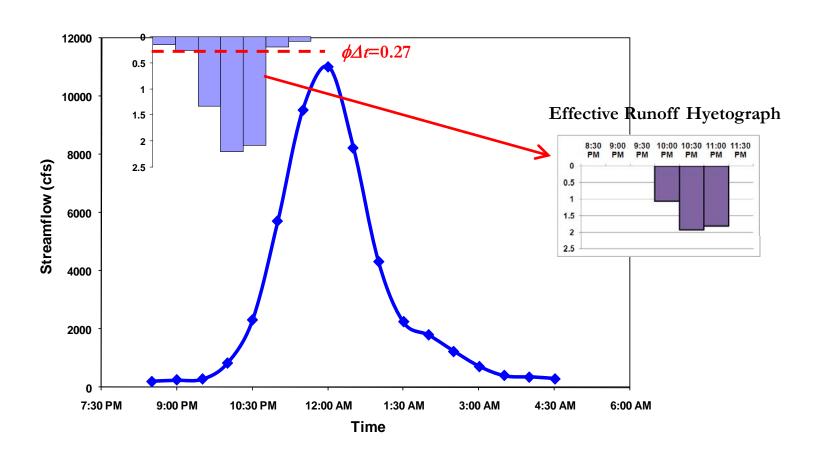
- Estimate baseflow (straight line method)
  - Constant = 400 cfs



- Calculate Direct Runoff Hydrograph
  - Subtract 400 cfs

| Date   | Time     | Observed |            | Direct Runoff |        |            |                         |
|--------|----------|----------|------------|---------------|--------|------------|-------------------------|
|        |          | Rainfall | Streamflow | Time          | cfs    | m3         |                         |
|        |          | in       | cfs        | 1/2 hr        |        |            |                         |
| 24-May | 8:30 PM  | 0.15     | 203        |               |        |            |                         |
|        | 9:00 PM  | 0.26     | 246        |               |        |            |                         |
|        | 9:30 PM  | 1.33     | 283        |               | 428    | 770,400    |                         |
|        | 10:00 PM | 2.2      | 828        | 1             | 1,923  | 3,461,400  |                         |
|        | 10:30 PM | 2.08     | 2323       | 2             | 5,297  | 9,534,600  |                         |
|        | 11:00 PM | 0.2      | 5697       | 3             | 9,131  | 16,435,800 |                         |
|        | 11:30 PM | 0.09     | 9531       | 4             | 10,625 | 19,125,000 |                         |
| 25-May | 12:00 AM |          | 11025      | 5             | 7,834  | 14,101,200 |                         |
|        | 12:30 AM |          | 8234       | 6             | 3,921  | 7,057,800  |                         |
|        | 1:00 AM  |          | 4321       | 7             | 1,846  | 3,322,800  |                         |
|        | 1:30 AM  |          | 2246       | 8             | 1,402  | 2,523,600  |                         |
|        | 2:00 AM  |          | 1802       | 9             | 830    | 1,494,000  |                         |
|        | 2:30 AM  |          | 1230       | 10            | 313    | 563,400    |                         |
|        | 3:00 AM  |          | 713        | 11            |        |            |                         |
|        | 3:30 AM  |          | 394        |               |        |            |                         |
|        | 4:00 AM  |          | 354        |               |        |            |                         |
|        | 4:30 AM  |          | 303        |               | Total  | 7.839E+07  | Volume of direct runoff |

$$r_d = \frac{V_d}{A} = \frac{7.839 * 10^7 \text{ ft}^3}{7.03 \text{ mi} * 5280^2 \text{ ft}^2} = 4.80 \text{ in}$$
 Depth of direct runoff


- Neglect all precipitation intervals that occur before the onset of direct runoff (before 9:30)
- Select  $R_m$  as the precipitation values in the 1.5 hour period from 10:00 11:30

$$r_d = \sum_{m=1}^{M} (R_m - \phi \Delta t) = \sum_{m=1}^{3} (R_m - \phi 3 * 0.5)$$

$$4.80 = (1.33 + 2.20 + 2.08 - \phi * 3 * 0.5)$$

$$\phi = 0.54 \, \text{in}$$

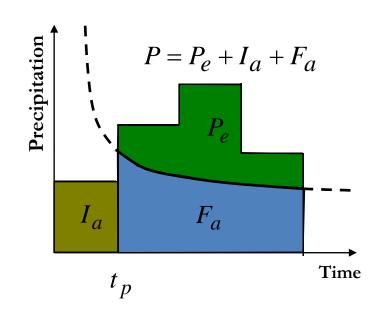
$$\phi \Delta t = 0.54 * 0.5 = 0.27 \text{ in}$$



### **SCS Curve Number Method**

- SCS Curve Number (CN) method
  - estimates excess precipitation as a function of
    - cumulative precipitation
    - soil cover
    - land use, and
    - antecedent moisture
- Developed for small basins (< 400 sq. mi.)</li>
- Classify soils into four types
- Simple to use
- Converts basin storage into something simpler and more manageable (a "curve number" CN)

## Losses - SCS Method


- Total rainfall separated into 3 parts:
  - Direct runoff
  - Continuing Loss
  - Initial Loss
- SCS Assumption

$$\frac{ActualStorage}{PotentialStorage} = \frac{ActualRunoff}{PotentialRunoff}$$

$$\frac{(P-I_a)-P_e}{S} = \frac{P_e}{P-I_a}$$

Solve for Rainfall Excess

$$P_e = \frac{(P - I_a)^2}{P - I_a + S}$$



P = Total Rainfall

 $P_e$  = Excess Rainfall (Runoff)

 $I_a$  = Initial Loss

 $F_a$  = Continuing Loss

S = Maximum Watershed Storage

## SCS Method (Cont.)

Experiments showed

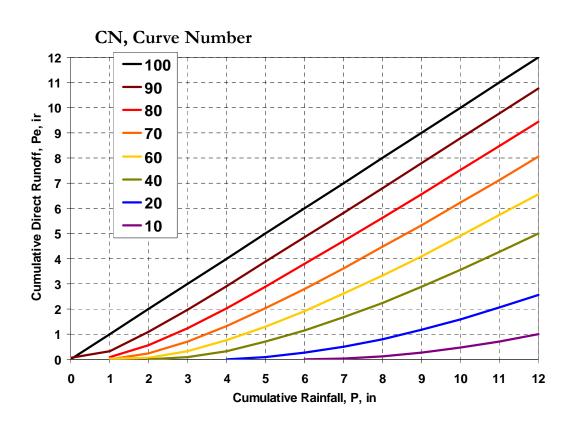
$$I_a = 0.2S$$

So

$$P_e = \frac{(P - 0.2S)^2}{P + 0.8S}$$

$$S = \frac{1000}{CN} - 10$$

(American Units; 0 < CN < 100)


$$S = \frac{25400}{CN} - 254CN$$

(SI Units; 30 < CN < 100)

Surface

Impervious: CN = 100

■ Natural: CN < 100



## SCS Method (Cont.)

- CN depends on previous (antecedent) rainfall
- Normal conditions, AMC(II)

• Dry conditions, AMC(I) 
$$CN(I) = \frac{4.2CN(II)}{10 - 0.058CN(II)}$$

• Wet conditions, AMC(III) 
$$CN(III) = \frac{23CN(II)}{10 + 0.13CN(II)}$$

|           | 5-day antecedent rainfall (in) |                |  |  |  |
|-----------|--------------------------------|----------------|--|--|--|
| AMC Group | Dormant season                 | Growing season |  |  |  |
| I         | < 0.50                         | < 1.4          |  |  |  |
| II        | 0.5 1.1                        | 1.4 – 2.1      |  |  |  |
| III       | > 1.1                          | > 2.1          |  |  |  |

# SCS Method (Cont.)

#### • *CN* depends on soil conditions

| Group | Minimum Infiltration<br>Rate (in/hr) | Soil type                                                                                                   |
|-------|--------------------------------------|-------------------------------------------------------------------------------------------------------------|
| A     | 0.3 - 0.45                           | High infiltration rates. Deep, well drained sands and gravels                                               |
| В     | 0.15 - 0.30                          | Moderate infiltration rates. Moderately deep, moderately well drained soils with moderately coarse textures |
| С     | 0.05 - 0.15                          | Slow infiltration rates. Soils with layers, or soils with moderately fine textures                          |
| D     | 0.00 - 0.05                          | Very slow infiltration rates. Clayey soils, high water table, or shallow impervious layer                   |

## **Example - SCS Method (1)**

- Rainfall: 5 in.
- Area: 1000-acres
- Soils:
  - Class B: 50%
  - Class C: 50%
- Antecedent moisture: AMC(II) Normal
- Land use
  - Residential
    - 40% with 30% impervious cover
    - 12% with 65% impervious cover
  - Paved roads: 18% with curbs and storm sewers
  - Open land: 16%
    - 50% fair grass cover
    - 50% good grass cover
  - Parking lots, etc.: 14%

# Example (SCS Method 1, Cont.)

|                             | Hydrologic Soil Group |    |         |    |    |         |  |
|-----------------------------|-----------------------|----|---------|----|----|---------|--|
|                             |                       | В  |         |    | С  |         |  |
| Land use                    | %                     | CN | Product | %  | CN | Product |  |
| Residential (30% imp cover) | 20                    | 72 | 14.40   | 20 | 81 | 16.20   |  |
| Residential (65% imp cover) | 6                     | 85 | 5.10    | 6  | 90 | 5.40    |  |
| Roads                       | 9                     | 98 | 8.82    | 9  | 98 | 8.82    |  |
| Open land: good cover       | 4                     | 61 | 2.44    | 4  | 74 | 2.96    |  |
| Open land: Fair cover       | 4                     | 69 | 2.76    | 4  | 79 | 3.16    |  |
| Parking lots, etc           | 7                     | 98 | 6.86    | 7  | 98 | 6.86    |  |
| Total                       | 50                    |    | 40.38   | 50 |    | 43.40   |  |

# **Example (SCS Method 1 Cont.)**

Average AMC

$$CN = 83.8$$
  $S = \frac{1000}{CN} - 10$   
 $S = \frac{1000}{83.8} - 10 = 1.93 \text{ in}$   
 $P_e = \frac{(P - 0.2S)^2}{P + 0.8S} = \frac{(5 - 0.2 \times 1.93)^2}{5 + 0.8 \times 1.93} = 3.25 \text{ in}$ 

Wet AMC

$$P_e = \frac{(P - 0.2S)^2}{P + 0.8S} = \frac{(5 - 0.2 * 0.83)^2}{5 + 0.8 * 0.83} = 4.13$$
in

# **Example (SCS Method 2)**

- Given P, CN = 80, AMC(II)
- Find: Cumulative abstractions and excess rainfall hyetograph

| Time (hr) | Cumulative<br>Rainfall (in) | Cumulative Abstractions (in) |    | Cumulative<br>Excess Rainfall (in) | Excess Rainfall<br>Hyetograph (in) |
|-----------|-----------------------------|------------------------------|----|------------------------------------|------------------------------------|
|           | Р                           | Ia                           | Fa | Pe                                 | 78-1 (*)                           |
| 0         | 0                           |                              |    |                                    |                                    |
| 1         | 0.2                         |                              |    |                                    |                                    |
| 2         | 0.9                         |                              |    |                                    |                                    |
| 3         | 1.27                        |                              |    |                                    |                                    |
| 4         | 2.31                        |                              |    |                                    |                                    |
| 5         | 4.65                        |                              |    |                                    |                                    |
| 6         | 5.29                        |                              |    |                                    |                                    |
| 7         | 5.36                        |                              |    |                                    |                                    |

## Example (SCS Method – 2)

Calculate storage

$$S = \frac{1000}{CN} - 10 = \frac{1000}{80} - 10 = 2.50 \text{ in}$$

Calculate initial abstraction  $I_a = 0.2S = 0.2*2.5 = 0.5$ in

$$I_a = 0.2S = 0.2 * 2.5 = 0.5 \text{ in}$$

- Initial abstraction removes
  - 0.2 in. in 1<sup>st</sup> period (all the precip)
  - 0.3 in. in the 2<sup>nd</sup> period (only part of the precip)
- Calculate continuing abstraction from SCS method equations

$$F_a = \frac{S(P - I_a)}{(P - I_a + S)} = \frac{2.5(P - 0.5)}{(P + 2.0)}$$

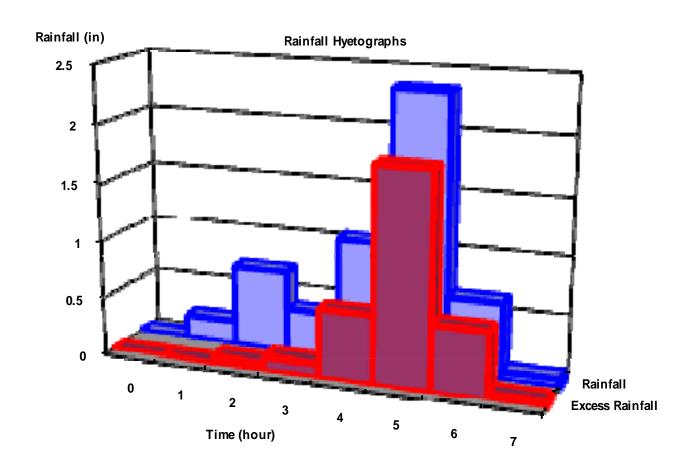
| Time<br>(hr) | Cumulative<br>Rainfall (in) |  |  |
|--------------|-----------------------------|--|--|
|              | P                           |  |  |
| 0            | 0                           |  |  |
| 1            | 0.2                         |  |  |
| 2            | 0.9                         |  |  |
| 3            | 1.27                        |  |  |
| 4            | 2.31                        |  |  |
| 5            | 4.65                        |  |  |
| 6            | 5.29                        |  |  |
| 7            | 5.36                        |  |  |

## Example (SCS method -2, Cont.)

Cumulative abstractions can now be calculated

| Time<br>(hr) | Cumulative<br>Rainfall (in) | Cumulative<br>Abstractions (in) |        |  |  |
|--------------|-----------------------------|---------------------------------|--------|--|--|
|              | P                           | $I_a$                           | $F_a$  |  |  |
| 0            | 0                           | 0                               | -      |  |  |
| 1            | 0.2                         | 0.2                             | -      |  |  |
| 2            | 0.9                         | 0.5                             | 0.34   |  |  |
| 3            | 1.27                        | 0.5                             | 0.59 🖊 |  |  |
| 4            | 2.31                        | 0.5                             | 1.05   |  |  |
| 5            | 4.65                        | 0.5                             | 1.56   |  |  |
| 6            | 5.29                        | 0.5                             | 1.64   |  |  |
| 7            | 5.36                        | 0.5                             | 1.65   |  |  |

$$F_a = \frac{2.5(P - 0.5)}{(P + 2.0)}$$


$$F_a(2 \text{ hr}) = \frac{2.5(0.9 - 0.5)}{(0.9 + 2.0)} = 0.34 \text{ in}$$

# Example (SCS method 2, Cont.)

- Cumulative excess rainfall can now be calculated
- Excess Rainfall Hyetograph can be calculated

| Time<br>(hr) | Cumulative<br>Rainfall | Cumulative Abstractions (in) |       | Cumulative<br>Excess Rainfall (in) | Excess Rainfall<br>Hyetograph (in) |
|--------------|------------------------|------------------------------|-------|------------------------------------|------------------------------------|
|              | (in)                   | (,                           |       |                                    |                                    |
|              | P                      | $I_a$                        | $F_a$ | $P_e$                              | $\Delta P_e$                       |
| 0            | 0                      | 0                            | 1     | 0                                  | 0                                  |
| 1            | 0.2                    | 0.2                          | -     | 0                                  | 0                                  |
| 2            | 0.9                    | 0.5                          | 0.34  | 0.06                               | 0.06                               |
| 3            | 1.27                   | 0.5                          | 0.59  | 0.18                               | 0.12                               |
| 4            | 2.31                   | 0.5                          | 1.05  | 0.76                               | 0.58                               |
| 5            | 4.65                   | 0.5                          | 1.56  | 2.59                               | 1.83                               |
| 6            | 5.29                   | 0.5                          | 1.64  | 3.15                               | 0.56                               |
| 7            | 5.36                   | 0.5                          | 1.65  | 3.21                               | 0.06                               |

# Example (SCS method 2, Cont.)



### **Time of Concentration**

- Different areas of a watershed contribute to runoff at different times after precipitation begins
- Time of concentration
  - Time at which all parts of the watershed begin contributing to the runoff from the basin
  - Time of flow from the farthest point in the watershed