CE 374 K – Hydrology

Hydrologic Measurement

Daene C. McKinney

Climate Station

- Temperature (wet- and dry-bulb) thermometer
- Humidity Hygromoter
- Evaporation pan
- Anemometer
- Radiometer

Non-Recording Raingauges

- Non-recording and recording rain gauges
 - A non-recording rain gauge is typically a catchment device calibrated to provide visual observation of rainfall amounts.
 - Recording gauges are equipped with paper charts and/or data logger equipment.
- Measure with calibrated flask or dipstick
- Flask usually tapered to allow accuracy if little rain

Digital Recording Raingauges

• Tipping Bucket Rain Gauge

- Two containers on balance beam form a "tipping bucket"
- Rain fills one container until it threshold weight reached
- Bucket then tips over, emptying collected water into total container and continues to collect rainfall in other container
- Magnet generates electric pulse which is recorded

Digital Recording Raingauges

- Optical Rain Gauge (ORG)
 - The ORG is mounted on a small pole
 - The ORG sends a beam of light (which you cannot see) from one of its ends to a detector at the other end.
 - When raindrops fall, they break the beam. The rain rate is measured by the ORG by measuring how often the beam is broken.
 - The rain rate can be used to calculate the total amount of rain that has fallen in any given period
 - ORG measures the rate of rainfall in millimeters per hour (mm/hr).

RADAR Measurements

- Raindrops in the atmosphere and the characteristics of the reflected signal(Z) can be related to rainfall rates (R).
- Most common is Marshall-Palmer relationship
- Radar is far from an absolutely accurate measurement method

 Provides detailed information on the time and space distribution of rain and can be particularly valuable for

heavy rainfall.

Snow Gauges

Snow Pillows

Recording of Data

- Data Loggers
 - A data logger is a computer that records and stores data from sensors both analog (voltage) and digital(counts).
 - The data logger can also be used as a controller to turn on and off electrical
 - The data logger requires a program to tell it what to do.
 - Preloaded computer chip that already has the program in it
 - or create the program
 - Data can then be accessed by a computer to monitor current conditions or download stored data.

- The flow of water in an open channel (or discharge) is defined as the volume of water passing a specified point in a given interval of time
 - expressed in units of volume per time
- Common units
 - litres per second (l.s⁻¹),
 - cubic meters per second (m³.s ⁻¹).
- Various methods of determination
 - flow is often estimated by determining the velocity at which water flows through a given cross-sectional area.
 - flow may be routed through a measurement device and measured directly
 - may be determined indirectly through use of appropriate measurements and mathematical models

Velocity-Area Method

- Estimate flow volume by determining the velocity at which water flows through a given cross-sectional area.
 - Flow = velocity X cross-sectional area or
 - Q = VA
- Need estimates of channel:
 - cross-sectional area
 - "average" current velocity
- Final flow estimate accomplished by subdividing the crosssection of the channel, determining the "average" flow for each subdivision, and summing the subdivision flows into a total flow for the channel.

STREAM GAUGING

Notice average velocity is at approximately 0.6 of the total depth or 0.4 from the bottom.

Streamflow Measurement

- Current meters used to measure velocity
- Current meters
 - shaft rotating vertically or horizontally
 - tail vanes keep it in stream
 - weight keep cable vertical

Acoustic Doppler Current Profiler

Determination of:

- Depth or height of the water surface (known as stage)
- Derivation of a relationship between stage and volume of discharge allows determination of a "rating curve"
- specific to the section of river
 - i.e. "rated section"
- Rating curves establish a relationship between depth (stage) and the amount of flow in a channel.

- Measurement of Stage
 - Graduated staff gauge
 - side of bridge etc.
 - Automatic water level recorders
 - logged automatically by logger, or
 - chart produced and digitised

Weirs and Flumes

- Commonly used on small streams and rivers
- Rigid, stable structures with closely defined cross-sectional area.

Stage Height

- Most common method of measuring the stage of a river is through the use of a stilling well.
- Stilling wells are located on the bank of a stream or on a bridge pier and are topped by a shelter that holds recorders and other instruments associated with the station.
- The well is connected to the stream by several intakes such that when the water level changes in the stream, the level simultaneously changes in the well
- Thus, the water surface in the well is maintained at the same level (stage) as the water surface in the stream.

