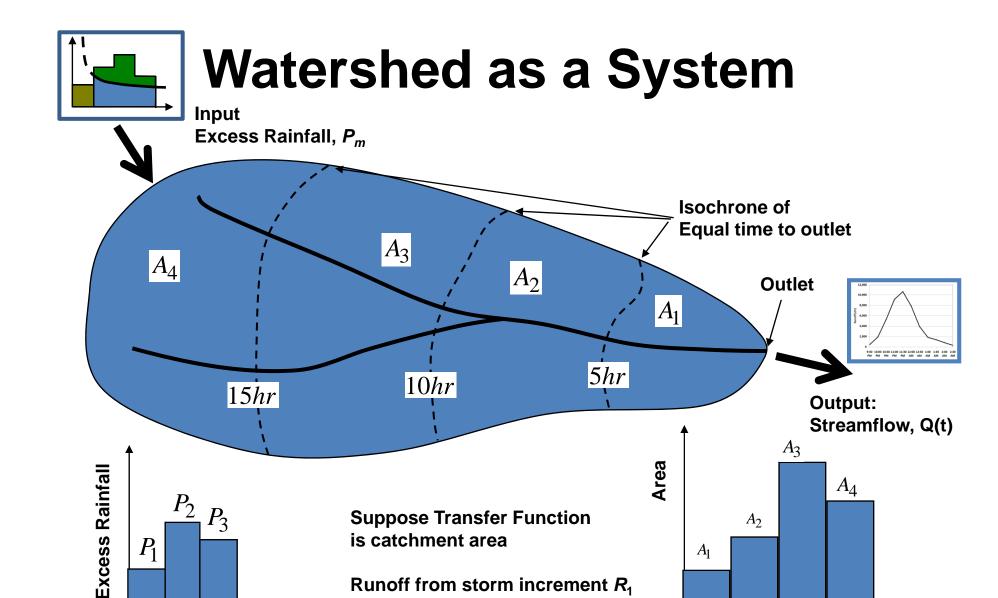

CE 374 K – Hydrology


Unit Hydrograph

Daene C. McKinney

System Response

System = Watershed

falling on A_2 reaches outlet at

 A_1 , etc.

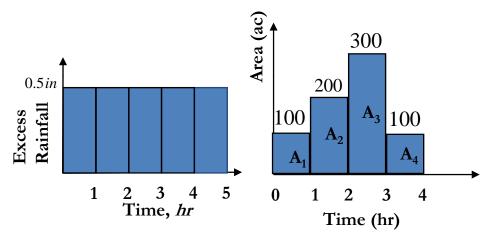
Time, t

same time as runoff from R_2 on

15

20

0

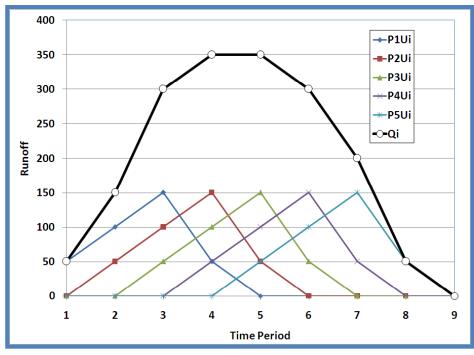

5

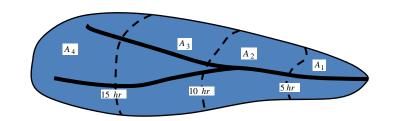
10

Time, t

Example

- Rainfall of 0.5 in/hr falls uniformly for 5 hrs.
- Derive a hydrograph for flow at outlet
- Response function is approximately the area $U_i \approx A_i$




$$A_4$$
 A_3
 A_2
 A_1
 $15 hr$
 $10 hr$
 $5 hr$

$$Q_1 = P_1U_1$$

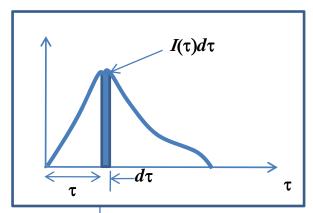
 $Q_2 = P_2U_1 + P_1U_2$
 $Q_3 = P_3U_1 + P_2U_2 + P_1U_3$
 $Q_4 = P_4U_1 + P_3U_2 + P_2U_3 + P_1U_4$
 $Q_5 = P_5U_1 + P_4U_2 + P_3U_3 + P_2U_4$
 $Q_6 = P_5U_2 + P_4U_3 + P_3U_4$
 $Q_7 = P_5U_3 + P_4U_4$
 $Q_8 = P_5U_4$

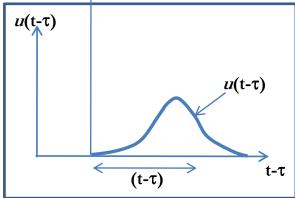
Example (Cont.)

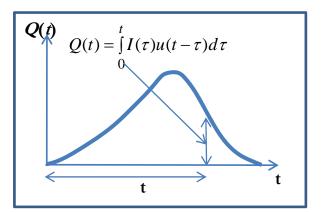
$Q_1 = 0.5*100$			= 50
$Q_2 = 0.5*100+$	0.5*200		=150
$Q_3 = 0.5*100+$	0.5*200+	0.5*300	= 300
$Q_4 = 0.5*100+$	0.5*200+	0.5*300+	0.5*100 = 350
$Q_5 = 0.5*100+$	0.5 * 200 +	0.5 * 300 +	0.5*100 = 350
$Q_6 =$	0.5 * 200 +	0.5 * 300 +	0.5*100 = 300
$Q_7 =$		0.5*300+	0.5*100 = 200
<i>Q</i> ₈ =			0.5*100 = 50

i	Pi	Ui	P1Ui	P2Ui	P3Ui	P4Ui	P5Ui	Qi
1	0.5	100	50	0	0	0	0	50
2	0.5	200	100	50	0	0	0	150
3	0.5	300	150	100	50	0	0	300
4	0.5	100	50	150	100	50	0	350
5	0.5		0	50	150	100	50	350
6			0	0	50	150	100	300
7			0	0	0	50	150	200
8	·		0	0	0	0	50	50
9	·		0	0	0	0	0	0

But, runoff is NOT just a function of area!


It depends on storage in the watershed, among other things.

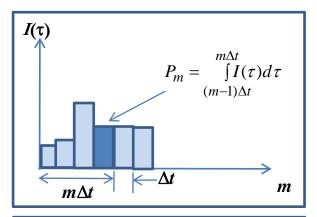

Generalize to <u>Unit</u> <u>Hydrograph</u>

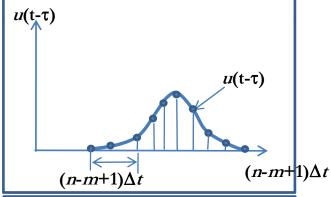

Unit Response Function: Continuous

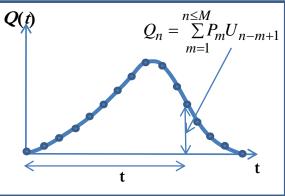
- Suppose at time τ , a unit of excess rainfall is distributed uniformly over the catchment instantaneously (in time $d\tau$). What's the response?
- Call this the Unit Response Function.
- To account for the time lag between the rainfall and the runoff, use the notation $u(t-\tau)$.
- Runoff, Q(t), at any time, t, for any excess rainfall, I(t) can be computed with a convolution integral:

$$Q(t) = \int_{0}^{t} I(\tau)u(t-\tau)d\tau$$

Unit Response Function: Discrete

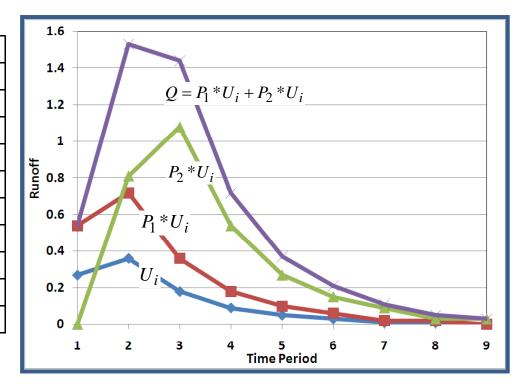

 Numerically, runoff can be computed with a discrete form of the convolution integral and a discrete unit response function (called a <u>unit hydrograph</u>), using averal excess rainfall for time intervals At:

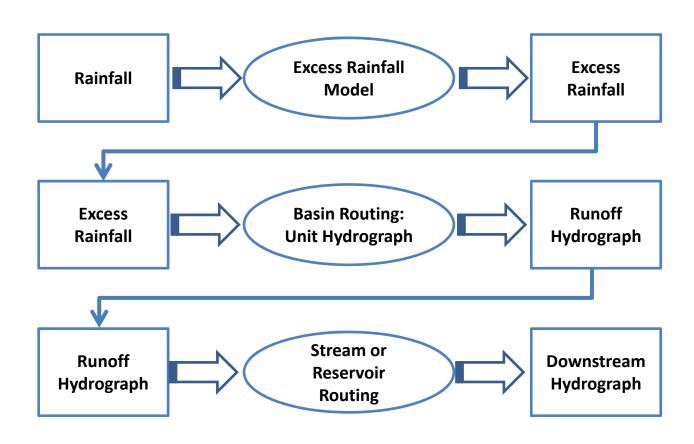

$$Q_n = \sum_{m=1}^{n < M} P_m U_{n-m+1}$$


- Q_n = runoff hydrograph ordinate at time $n\Delta t$;
- $P_{\rm m}$ = excess rainfall depth in time interval m;
- $U_{\text{n-m+1}} = \Delta t$ -unit response function ordinate n-m+1;
- M = number of periods of excess precipitation.

"...the basin outflow resulting from one unit of direct runoff generated uniformly over the drainage area at a uniform rainfall rate during a specified period of rainfall duration."

Sherman 1932




Example (7.2.2)

- A system has the following unit pulse response function (U_{n-m+1}) .
- Find the output if the input is 2 units in the first time interval and 3 units in the second time interval

i	Pi	Ui	P1Ui	P2Ui	Qi
1	2	0.27	0.54	0.00	0.54
2	3	0.36	0.72	0.81	1.53
3		0.18	0.36	1.08	1.44
4		0.09	0.18	0.54	0.72
5		0.05	0.10	0.27	0.37
6		0.03	0.06	0.15	0.21
7		0.01	0.02	0.09	0.11
8		0.01	0.02	0.03	0.05
9			0.00	0.03	0.03
		1.00	2.00	3.00	5.00

Goal: Model process by which rainfall is transformed into streamflow

