CE 374 K — Hydrology

Frequency Analysis

Daene C. McKinney



Extreme Events

1
Frequency of occurence

Extreme events: Magnitude o

Magnitude is related to frequency through a
probability distribution

Assumptions: Events are independent and
identically distributed (11D)



Return Period

Random variable, X
Realization, x

Threshold level x;

Extreme event occurs if X >x,
Recurrence interval

— 1 =time between occurrences of X >x,

Return Period, E[t] = Average recurrence interval



Guadalupe River near Victoria

m Example: USGS Station 08176500
http://nwis.waterdata.usgs.gov/tx/nwis/peak

Maximum Flow (CFS)
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x; =50,000
Exceeded 16 times

16 recurrence
intervals in 69 years

T = 9 =4.3years
16

Note: Book estimate
(up through 1978 =
5.1 yrs)



Probability of Occurrence

* Probability of an event happening is related to the
return period

e Return Period: E(T):T:i p:Pr(XZxT)z%
p

e Example:
— Pr[Max. Discharge in Guad. Riv. > 50K cfs in any year] =~ % = 0.23*

* . 1
1978 estimate ~ — =0.19
5.1
— Pr[ Max. Discharge in Guad. Riv. > 50K cfs at least once in 3 years]
=1-(1-0.2326)3=0.55**

1978 estimate ~ 0.48



Data Series

Complete duration series:
— all data available

Partial duration series:
— greater than base value

Annual exceedence series:
— Partial duration series with # of values = # years

Extreme value series

— largest or smallest values in equal intervals
 Annual series: interval =1 year
* Annual maximum series: largest values
e Annual minimum series : smallest values



Extreme Value Distributions

e Consider N samples of a random variable

e Put them in order of magnitude

e Extreme values: largest and smallest

e Limiting distributions: EV-I, EV-II, and EV-III

y

1k [ gowr
F(x):exp{—(l—kx_u) ]
a [
» k =0: EV-l (Gumbel) |
0.10
F(x)= exp[— exp(— HH o
o 0.05 : Ei-g:
» k < 0: EV-Il (Frechet) s | | .
> k> 0: EV-IIl (Weibull) oo 0 e
It seems that the rivers know the theory.

It only remains to convince the engineers of the validity of this analysis.
Emil Gumbel




Probability density function

Extreme Value Distributions
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EV-l (Gumbell) Distribution

e Often used for maximum type events (floods)

F(x)= eXp{— eXp(— xa—”ﬂ o = /6s u=x-05772cx

7T
— Reduced variate y:x_u ) F(x) = exp[-exp(-y)]
a
1 p:PI‘(XZXT)Zl r-1
y=-In|In S To== Flr)=
F(x) 1 !
TZ].—F(XT)

YT :_Inliln(ﬁjjl -XT =u+oyr T = Return Period



Example (12.2.1)

Given annual maxima for 10-

. 1.2
minute storms
1.1 50-year
Find 5- & 50-year return < 1
period 10-minute storms £ oo
_?3 08 5-year
x =0.649in s=0.177in E 0.7
B S 06
T g 0.5
— £
Y5 = In| In T_1 50.4
: § 0.3
5 E 0.2
:—In In ﬁ :15 <0_1
- N 0
\J6s  /6*0.177 Yoar
o= = =0.138

T T

=x—0.5772a =0.649-0.5772*0.138 = 0.569

X5 =u+ays =0.569+0.138*1.5 = 0.78in xgg =1.11in




Frequency Factors

Previous example only works if distribution is
invertible, many are not.

Once a distribution has been selected and its
parameters estimated, then how do we use it?

Chow proposed using: |x; =X+ Kys

fx(x)

A

where x; =Estimated event magnitude
K =Frequency factor
T =Return period
x =Sample mean
s =Sample standard deviation




Normal Distribution

1 x—u 2
e Normal distribution 1 ‘z(a)
fX(X)_G\/ﬂe

* So the frequency factor for the Normal
Distribution is the standard normal variate

X :.Y‘FKTS:)_C-FZTS

e Example: 50 year return period



EV-l (Gumbell) Distribution

/6
Xr =u+ayr “a=_7
—x-0. 5772@ 6 { In{ —TT 1)}} u=x-0sfrza

T __IH{IH(TT—lﬂ
-

:_—— 0.5772+1n In(i S
T 1

X7 = X+KT

F(x)= exp{— exp(— %ﬂ



Gamma Distribution

e Gamma Distribution — distribution of sum of n

lID exponential variables P =
fx)=""
r'(p)

* Used to model many natural phenomena

including streamflow ;.

— f(x)

e 2 Special Cases:
— Exponential =1 st
— Chi —squared 10 — =050

— .= 1.00
— .=2.00
05 oL = 8.00

A :%; 24 1s an integer —

0.0 1 1
0.0 05 1.0 1.5 2.0 2.5 3.0




Generalizations of Gamma Distribution

e Consider a random variable x. Subtract a constant e from x

* If (x—e) hasa Gamma distribution,

— then x has a Pearson Type 111 Distribution
» (3 parameter Gamma distribution)

e IfIn(x—e) hasa Gamma distribution
— then x has a Log Pearson Type |11 Distribution
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Log Pearson Type lll Distribution

1967 — Bulletin 15 — “A Uniform Technique for Determining
Flood Flow Frequencies”

— US Water Resources Council recommended LP-Ill as the “standard”
flood frequency distribution for all US government agencies

1976 — Bulletin 17

— Extended Bulleting 15 by recommending a “regional skew” parameter
for the LP-Ill distribution.

— Bulletin 17 describes method for computing flood frequency curves
using annual flood series with at least 10 years of data.

1892 - Bulletin 17-B

— Included methods for incorporating regional skewness into the
calculations



Log Pearson Type lll Distribution

 Event magnitudes are calculated as

= mean of logs of x (In or logyg)

<

yr :J_/""KTSy

t

y = standard deviation of logs of x

xp =e’T; if natural logs are used

xp =10°T; if base—10 logs are used

e K,=frequency factor (quantiles with p = 1/T) of an LP-III
distribution with skewness coefficient C,
— See table 12.3.1



LP-11l Example

 Find 50 year return period annual maximum
discharges on Guadalupe R. at Victoria, TX using LN

and LP-III
Average 4.288369
St. Dev. 0.448573
Skew 0.308895

Flood of October 1998, logQ=

5.6683859 = 4.28837 + K1 *0.44857

_ 5.6683859-4.28837
0.44857

Kr

Ky =3.076

From the table (12.3.1) with C, = 0.3
KT — 2211

yr = )7+KTSy
=4.28837 +2.211*0.44857
=5.28016

X1 = 1OyT
_ (528816

5.66838592

=190,616 cfs

Corresponds to a return period of 300 years (see Appendix 3 of Bulletin 17-B)



