CE 374 K – Hydrology

Frequency Analysis

Daene C. McKinney

Extreme Events

- Extreme events: Magnitude $\propto \frac{1}{\text{Frequency of occurence}}$
- Magnitude is related to frequency through a probability distribution
- Assumptions: Events are independent and identically distributed (IID)

Return Period

- Random variable, *X*
- Realization, *x*
- Threshold level x_T
- Extreme event occurs if $X \ge x_T$
- Recurrence interval
 - τ = time between occurrences of $X \ge x_T$
- Return Period, $E[\tau]$ = Average recurrence interval

Guadalupe River near Victoria

Example: USGS Station 08176500

http://nwis.waterdata.usgs.gov/tx/nwis/peak

Probability of Occurrence

- Probability of an event happening is related to the return period
- Return Period: $E(\tau) = T = \frac{1}{p}$ $p = \Pr(X \ge x_T) = \frac{1}{T}$
- Example:
 - Pr[Max. Discharge in Guad. Riv. > 50K cfs in any year] $\approx \frac{1}{4.3} = 0.23^*$

*1978 estimate
$$\approx \frac{1}{5.1} = 0.19$$

- Pr[Max. Discharge in Guad. Riv. > 50K cfs at least once in 3 years] = $1 - (1 - 0.2326)^3 = 0.55**$

Data Series

- Complete duration series:
 - all data available
- Partial duration series:
 - greater than base value
- Annual exceedence series:
 - Partial duration series with # of values = # years
- Extreme value series
 - largest or smallest values in equal intervals
 - Annual series: interval = 1 year
 - Annual maximum series: largest values
 - Annual minimum series : smallest values

Extreme Value Distributions

- Consider N samples of a random variable
- Put them in order of magnitude
- Extreme values: largest and smallest
- Limiting distributions: EV-I, EV-II, and EV-III

$$F(x) = \exp\left[-\left(1 - k\frac{x - u}{\alpha}\right)^{1/k}\right]$$

> k = 0: EV-I (Gumbel)

$$F(x) = \exp\left[-\exp\left(-\frac{x-u}{\alpha}\right)\right]$$

 \geqslant k < 0: EV-II (Frechet)

 $\geqslant k > 0$: EV-III (Weibull)

It seems that the rivers know the theory.

It only remains to convince the engineers of the validity of this analysis.

Emil Gumbel

Extreme Value Distributions

Droughts

EV-I (Gumbell) Distribution

Often used for maximum type events (floods)

$$F(x) = \exp\left[-\exp\left(-\frac{x-u}{\alpha}\right)\right] \qquad \alpha = \frac{\sqrt{6}s}{\pi} \qquad u = \bar{x} - 0.5772\alpha$$

Reduced variate

$$y = \frac{x - u}{\alpha} \qquad \Longrightarrow \qquad F(x) = \exp[-\exp(-y)]$$

$$y = -\ln\left[\ln\left(\frac{1}{F(x)}\right)\right] \longrightarrow p = \Pr(X \ge x_T) = \frac{1}{T}$$

$$\frac{1}{T} = 1 - F(x_T)$$

$$F(x_T) = \frac{T - 1}{T}$$

$$y_T = -\ln\left|\ln\left(\frac{T}{T-1}\right)\right| \longrightarrow x_T = u + \alpha y_T$$
 $T = \text{Return Period}$

Example (12.2.1)

- Given annual maxima for 10minute storms
- Find 5- & 50-year return period 10-minute storms

$$\bar{x} = 0.649 in$$
 $s = 0.177 in$

$$y_5 = -\ln\left[\ln\left(\frac{T}{T-1}\right)\right]$$
$$= -\ln\left[\ln\left(\frac{5}{5-1}\right)\right] = 1.5$$

$$\alpha = \frac{\sqrt{6}s}{\pi} = \frac{\sqrt{6}*0.177}{\pi} = 0.138$$

$$u = \bar{x} - 0.5772\alpha = 0.649 - 0.5772 * 0.138 = 0.569$$

$$x_5 = u + \alpha y_5 = 0.569 + 0.138 * 1.5 = 0.78 in$$

$$x_{50} = 1.11in$$

Frequency Factors

- Previous example only works if distribution is invertible, many are not.
- Once a distribution has been selected and its parameters estimated, then how do we use it?
- Chow proposed using:

$$x_T = \overline{x} + K_T s$$

• where x_T = Estimated event magnitude

 K_T = Frequency factor

T =Return period

 \bar{x} =Sample mean

s =Sample standard deviation

Normal Distribution

Normal distribution

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$K_T = \frac{x_T - \overline{x}}{s} = z_T$$

 So the frequency factor for the Normal Distribution is the standard normal variate

$$x_T = \overline{x} + K_T s = \overline{x} + z_T s$$

Example: 50 year return period

$$T = 50; \ p = \frac{1}{50} = 0.02; \ K_{50} = z_{50} = 2.054$$

EV-I (Gumbell) Distribution

$$x_{T} = u + \alpha y_{T}$$

$$= \overline{x} - 0.5772 \frac{\sqrt{6}}{\pi} s + \frac{\sqrt{6}}{\pi} s \left\{ -\ln \left[\ln \left(\frac{T}{T - 1} \right) \right] \right\}$$

$$= \overline{x} - \frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{T}{T - 1} \right) \right] \right\} s$$

$$x_{T} = \overline{x} + K_{T} s$$

$$K_{T} = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{T}{T - 1} \right) \right] \right\}$$

$$F(x) = \exp\left[-\exp\left(-\frac{x-u}{\alpha}\right)\right]$$

Gamma Distribution

• Gamma Distribution – distribution of sum of n IID exponential variables ${}_{\lambda}{}^{\beta}{}_{\nu}{}^{\beta-1}{}_{\rho}{}^{-\lambda x}$

$$f_X(x) = \frac{\lambda^{\beta} x^{\beta - 1} e^{-\lambda x}}{\Gamma(\beta)}$$

Used to model many natural phenomena

including streamflow

- 2 Special Cases:
 - Exponential $\beta = 1$
 - Chi squared

$$\lambda = \frac{1}{2}$$
; 2β is an integer

Generalizations of Gamma Distribution

- Consider a random variable x. Subtract a constant e from x
- If (x e) has a Gamma distribution,
 - then x has a **Pearson Type III** Distribution
 - (3 parameter Gamma distribution)
- If ln(x-e) has a Gamma distribution
 - then x has a <u>Log Pearson Type III</u> Distribution

Log Pearson Type III Distribution

- 1967 Bulletin 15 "A Uniform Technique for Determining Flood Flow Frequencies"
 - US Water Resources Council recommended LP-III as the "standard" flood frequency distribution for all US government agencies
- 1976 Bulletin 17
 - Extended Bulleting 15 by recommending a "regional skew" parameter for the LP-III distribution.
 - Bulletin 17 describes method for computing flood frequency curves using annual flood series with at least 10 years of data.
- 1892 Bulletin 17-B
 - Included methods for incorporating regional skewness into the calculations

Log Pearson Type III Distribution

Event magnitudes are calculated as

```
y_T = \overline{y} + K_T s_y \overline{y} = \text{mean of logs of } x \text{ (ln } or \log_{10})
s_y = \text{standard deviation of logs of } x
x_T = e^{y_T}; if natural logs are used
x_T = 10^{y_T}; if base -10 logs are used
```

- K_T = frequency factor (quantiles with p = 1/T) of an LP-III distribution with skewness coefficient C_s
 - See table 12.3.1

LP-III Example

 Find 50 year return period annual maximum discharges on Guadalupe R. at Victoria, TX using LN and LP-III

Average	4.288369
St. Dev.	0.448573
Skew	0.308895

Flood of October 1998, logQ= 5.66838592

$$5.6683859 = 4.28837 + K_T * 0.44857$$

$$K_T = \frac{5.6683859 - 4.28837}{0.44857}$$

$$K_T = 3.076$$

From the table (12.3.1) with $C_s = 0.3$ $K_T = 2.211$

$$y_T = \bar{y} + K_T s_y$$
= 4.28837 + 2.211*0.44857
= 5.28016

$$x_T = 10^{y_T}$$
= 10^{5.28816}
= 190,616 cfs

Corresponds to a return period of 300 years (see Appendix 3 of Bulletin 17-B)