
Floating-Point Support
Many Microsoft run-time library functions require floating-point support from a math coprocessor or from the 
floating-point libraries that accompany the compiler. Floating-point support functions are loaded only if required.

When you use a floating-point type specifier in the format string of a call to a function in the printf or scanf family, 
you must specify a floating-point value or a pointer to a floating-point value in the argument list to tell the compiler 
that floating-point support is required. The math functions in the Microsoft run-time library handle exceptions the 
same way that the UNIX V math functions do.

The Microsoft run-time library sets the default internal precision of the math coprocessor (or emulator) to 64 bits. 
This default applies only to the internal precision at which all intermediate calculations are performed; it does not 
apply to the size of arguments, return values, or variables. You can override this default and set the chip (or 
emulator) back to 80-bit precision by linking your program with LIB/FP10.OBJ. On the linker command line, 
FP10.OBJ must appear before LIBC.LIB, LIBCMT.LIB, or MSVCRT.LIB.

Floating-Point Functions

Routine Use

abs Return absolute value of int

acos Calculate arccosine

asin Calculate arcsine

atan, atan2 Calculate arctangent

atof Convert character string to double-precision floating-point value

Bessel functions Calculate Bessel functions _j0, _j1, _jn, _y0, _y1, _yn

_cabs Find absolute value of complex number

ceil Find integer ceiling

_chgsign Reverse sign of double-precision floating-point argument

_clear87, _clearfp Get and clear floating-point status word

_control87, _controlfp Get old floating-point control word and set new control-word value

_copysign Return one value with sign of another

cos Calculate cosine

cosh Calculate hyperbolic cosine

difftime Compute difference between two specified time values

div Divide one integer by another, returning quotient and remainder

_ecvt Convert double to character string of specified length

exp Calculate exponential function



fabs Find absolute value

_fcvt Convert double to string with specified number of digits following decimal 
point

_finite Determine whether given double-precision floating-point value is finite

floor Find largest integer less than or equal to argument

fmod Find floating-point remainder

_fpclass Return status word containing information on floating-point class 

_fpieee_flt Invoke user-defined trap handler for IEEE floating-point exceptions

_fpreset Reinitialize floating-point math package

frexp Calculate exponential value

_gcvt Convert floating-point value to character string

_hypot Calculate hypotenuse of right triangle

_isnan Check given double-precision floating-point value for not a number (NaN)

labs Return absolute value of long

ldexp Calculate product of argument and 2 to specified power

ldiv Divide one long integer by another, returning quotient and remainder

log Calculate natural logarithm

log10 Calculate base-10 logarithm

_logb Extract exponential value of double-precision floating-point argument

_lrotl, _lrotr Shift unsigned long int left (_lrotl) or right (_lrotr)

_matherr Handle math errors

__max Return larger of two values

__min Return smaller of two values

modf Split argument into integer and fractional parts

_nextafter Return next representable neighbor

pow Calculate value raised to a power

printf, wprintf Write data to stdout according to specified format

rand Get pseudorandom number

_rotl, _rotr Shift unsigned int left (_rotl) or right (_rotr)

_scalb Scale argument by power of 2

scanf, wscanf Read data from stdin according to specified format and write data to specified 
location



sin Calculate sine

sinh Calculate hyperbolic sine

sqrt Find square root

srand Initialize pseudorandom series

_status87, _statusfp Get floating-point status word

strtod Convert character string to double-precision value

tan Calculate tangent

tanh Calculate hyperbolic tangent


