SOILS AND FOUNDATIONS Vol. 44, No. 3, 79-89, June 2004
Japanese Geotechnical Society

SUCTION PROFILES AND SCALE FACTORS FOR UNSATURATED FLOW
UNDER INCREASED GRAVITATIONAL FIELD

EDUARDO DELL’AvaNZzI), JORGE G. ZORNBERG!) and ALEXANDRE R. CABRALI)

ABSTRACT

Scale factors for centrifuge modelling have been traditionally defined using dimensional analysis concepts. This is
the case, for example, of centrifuge modelling of unsaturated water flow. However, scale factors governing suction,
discharge velocity, and time obtained using dimensional analysis have often differed from those obtained from
methodologies not based on dimensionless groups. In this paper, a consistent framework is developed for analytic
determination of suction profiles for steady-state unsaturated flow under both natural and increased gravitational
fields. This framework allows deduction of the scale factors, which emerge from direct comparison of the analytic
solutions for model and prototype without the need to use dimensionless groups. For centrifuge conditions leading to
an approximately uniform acceleration field, the suction profile in the prototype is found to be the same as that in the
model, while the discharge velocity is found to be properly scaled by 1/N and time by N2, where N is the average
acceleration ratio between model and prototype. If acceleration field is not uniform, the scale factors should be defined
as a function of the centrifuge radius and model length. In addition, evaluation of the effect of different test conditions
allows identification of the suction profiles and test setup best suited for hydraulic conductivity determination using
centrifuge techniques.
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testing is comparatively small, and the long-term behav-
INTRODUCTION iour of the geotechnical model can be obtained within a
The use of alternative earthen covers such as reduced time frame. In addition, the use of centrifuge
evapotranspirative cover systems or capillary barriers has  testing has proven useful to accelerate determination of
been proposed for waste containment in arid and semiar-  the hydraulic conductivity-moisture content relationship
id regions. This has led to increased need for proper of soils (Nimmo et al., 1987, 1992; Conca and Wright,
understanding of the mechanisms governing the water  1990). These investigations have shown the feasibility of
flow in unsaturated soils. Field monitoring programs and centrifuge testing of unsaturated soils, defined proce-
numerical simulations have provided invaluable insight dures for measurement of unsaturated hydraulic conduc-
into the significance of the parameters that dominate the tivity, and validated the use of Darcy’s law under in-
behaviour of earthen cover systems (e.g. Khire et al., creased gravitational fields.
1999, 2000; Morris and Stormont, 1997). However, The principle of centrifuge modelling is based upon the
difficulties in field monitoring have prevented full valida- requirement of similitude between model and prototype.
tion of numerical tools. In order to gain further under- If a model of a prototype structure is built with dimen-
standing into the complex unsaturated processes taking sions reduced by a factor 1/N, then an acceleration field
place in soil covers, this study seeks the use of physical of N times the acceleration of gravity, g, will generate
modelling using a geotechnical centrifuge as an extra stresses by self-weight in the model that are the same as
source of geotechnical data. The laboratory centrifuge those in the prototype structure. Scale factors for unsatu-
environment favours a systematic control of variables rated flow in soils have been investigated using dimen-
governing the hydraulic behaviour of earthen systems sional analysis concepts (Cargill and Ko, 1983; Goodings,
and facilitates data collection for validation of unsaturat- 1982; Arulandanan et al., 1988; Cooke and Mitchell,
ed flow numerical simulations. 1991; Barry et al., 2001; Butterfield, 2000). These
Centrifuge modelling represents a feasible alternative investigations concluded that unsaturated flow problems,
to full scale prototype monitoring, since the stress levels governed by the dimensionless ‘‘capillary effects num-
in the model equals those in the prototype, the cost of ber’’, can be analysed using the same scaling relations as
i)
ii)

iii)
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(saturated) laminar flow problems, governed by the
dimensionless ‘‘advection number’’. While use of dimen-
sional analysis has led to scale factors for unsaturated
flow equal to those used for saturated flow, different scale
factors have often been obtained in studies that have
avoided the use of dimensional analysis (e.g. by focusing
on equations governing unsaturated flow in model and
prototype). For example, based on the analysis of flow
differential equations, Goforth et al. (1991) concluded on
the impossibility of scaling unsaturated flow when suc-
tion gradients dominate water flow. In addition, using
Poiseuille’s equation for capillary flow, Lord (1999)
arrived at scale factors for capillary flow different to those
governing saturated flow.

Buckingham’s ‘Pi’ theorem (Buckingham, 1914) has
been recognized to provide necessary, but not sufficient
conditions for solution of a problem. This is because
Buckingham’s theorem provides an incomplete algorithm
for precisely identifying the dimensionless groups govern-
ing a problem (e.g. if some of the key variables have
either identical dimensions or are dimensionless), for
deciding what variables might or might not be used to
form the groups, and for evaluating the consequences
of incorporating too many (or too few) dimensions in the
analysis (Butterfield, 1999). Algorithms imposing addi-
tional conditions have been proposed to overcome the
perceived limitations of Buckingham’s ‘Pi’ theorem
(Butterfield, 2000). However, the perceived skepticism of
relying solely on dimensional analysis and discrepancies
with past studies involving demonstrations using
equations for unsaturated flow has made the important
task of validating scale factors for unsaturated flow, at
best, incomplete.

The overall objective of this paper is to provide a
consistent framework of analytical solutions for steady-
state, one-dimensional unsaturated flow for natural and
increased gravitational fields. The solutions are obtained
for a generic hydraulic conductivity function (k-func-
tion). The scale factors for suction, discharge velocity,
flow rate, and time are then shown to emerge directly
from comparison of the solutions obtained under natural
and increased gravitational fields, avoiding altogether
the use of dimensional analysis and the determination of
dimensionless groups. The unsaturated flow solutions
obtained using a generic k-function are then applied
using a specific k-function (Gardner, 1958). This provides
insight into limitations for the applicability of the
deduced scale factors and into optimisation of centrifuge
modelling for the determination of the soil unsaturated
hydraulic conductivity.

BASIC FRAMEWORK

Basic Framework for Unsaturated Flow in a Prototype
Figure 1 shows a schematic representation of one-
dimensional flow taking place through a control volume
in a prototype (i.e. a system under natural gravitational
field). Flow is driven by a gradient in fluid potential (i.e.
energy per unit mass of fluid). The fluid potential in the

-5 Q
dz » L g
»
+v
Z, [
Datum | B
\*——//
V=Vou

Fig. 1. Flow through the control volume in a vertical prototype

prototype control volume equals:

1 (v,\>
=gzt (;) - M
where @, is the fluid potential, g the acceleration of
gravity, z, the elevation from a datum, v, the discharge
velocity, # the soil porosity, y, is the total suction (using
atmospheric pressure as reference), and p,, the fluid den-
sity. The subscript p denotes ‘‘prototype.”” The terms in
Eq. (1) correspond to the potential energy, kinetic energy
of the fluid, and energy due to fluid pressure. The seepage
velocity (ratio between discharge velocity and soil porosi-
ty) is generally small, leading to a negligible component
due to kinetic energy. In this case, the fluid potential
becomes:

Yo
D, =gz~ @)
P P Do
Water flow in the prototype control volume is esti-
mated by Darcy’s law, which can be expressed as:
k(y) 39y
=————A4 3
O g 9z, " 3)
where Q, is the flow rate, A, is the cross-sectional area of
the control volume and k() is the unsaturated hydraulic
conductivity described by a generic k-function (express-
ing the hydraulic conductivity as a function of the soil
suction). The discharge velocity can be defined as the flow
rate per unit of area, as follows:
k(y) 0P
vp= [eY
g 0%
where v, is the discharge velocity in the prototype control
volume. Combining Eqs. (2) and (4), the discharge
velocity can be expressed by:

__kw( v
T e (,; " azp> ©

The soil k-function and the suction profile across the
prototype are needed to estimate the discharge velocity.

Considering the prototype control volume shown in
Fig. 1, the principle of continuity leads to:
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where 6 is the volumetric water content. Assuming the
validity of Darcy’s law (Eq. (4)), the continuity principle
for flow in the prototype (Eq. (6)) can be expressed as:
9 (k) 0%y _06
0%, | & 0% at
For a homogeneous saturated medium that does not
undergo volume changes with time, and considering that
steady-state condition has been reached, Eq. (7) takes the
form of Laplace’s equation:
P,
373
Considering Eq. (2) into Eq. (8), the differential
equation for saturated one-dimensional steady-state flow
can be stated as:

(6)
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In the case of unsaturated flow, the derivative §60/9¢ in
Eq. (7) equals zero if the unsaturated medium does not
undergo volume changes with time and a steady-state
condition has been reached. In this case, considering
Eq. (5) into Eq. (6), the continuity principle can be
expressed as the Richards’ equation for steady-state:

a [k 3
9 [k pwg—ﬂ =0
02y | Pug 9Zp

Solution of an unsaturated flow problem using Eq. (10)
involves determination of the k-function of the soil and
precising the boundary conditions of the problem. By
further developing Eq. (10), the governing equation for
steady-state unsaturated flow can also be expressed as:

311 /k(w)] 3y
v, 9%
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Under steady-state condition, the suction profile
through the soil prototype does not change with time
and, consequently, the suction profile is only a function
of z,.

an

Basic Framework for Unsaturated Flow in a Centrifuge
Model

Figure 2 shows a schematic representation of one-
dimensional flow taking place through a control volume
in a centrifuge model (i.e. a system under increased
gravitational field). The centripetal acceleration is a
function of the angular velocity and the radial distance,
as follows:

(12)

where a. is the centripetal acceleration, w is the angular
velocity, r is the radial distance from the centrifuge axis
to the control volume, and N, is the ratio between the
centripetal acceleration and the acceleration of gravity at
a distance r from the centrifuge axis.

a.=wr=N,g
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Fig. 2. Flow through the control volume in a centrifuge model

The coordinate z, depicted in Fig. 2 is defined as:
(13)

where r, is the distance from the centrifuge axis to the
datum used to define the potential energy of the fluid (i.e.
Zn=0). In the analyses presented herein, the datum is
located at the base of the model. From Eqs. (12) and (13),
the acceleration ratio can be expressed as:

Zm=Try—r

2
Ne="(ro=2n) (14
g

Water flow in the model is also driven by a gradient in
fluid potential. The component of the fluid potential that
corresponds to the potential energy in a centrifuge model
will differ from that in a prototype under natural gravity.
Accordingly, the fluid potential in the model control
volume equals:

1 1
¢m=_£w2(r0_Zm)2+~ (15)

U\’ Wm
2 <n ) Dw
where @, is the fluid potential, v, the discharge velocity,
and y,, the total suction. The subscript m denotes
“model’’. The terms of the fluid potential stated by
Eq. (15) correspond to the potential energy, kinetic
energy of the fluid, and energy due to pressure. The first
term is negative because potential energy increases in
opposite direction to the centripetal acceleration, which
acts in the direction of the radius. The discharge velocity
to be obtained using the fluid potential defined by
Eq. (15) will be positive in the direction of z,, that is, in
the opposite direction of the radius.

As in the case of the prototype, the seepage velocity is
negligible and the kinetic energy component in Eq. (15)
can be disregarded if turbulent flow does not occur during
centrifuge testing. In this case, Eq. (15) becomes:

Do) = =5 W=z = L7

w

(16)

Water flow in the centrifuge model can also be
estimated by Darcy’s law. The discharge velocity (posi-
tive in the direction of z,) is given by:

_ky) 9Pn

Vm= 17
g 0Zm 17
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where v, is the discharge velocity in the model control
volume.
Adopting the atmospheric pressure as reference, and
considering Eq. (16) into Eq. (17):
k OWnm
= — k(w) (pwwz(m ) - )
pug 0Zm
Considering a model control volume, the principle of
continuity leads to:

(18)

dvm_ _ 96
0Zm ot
Assuming the validity of Darcy’s law (Eq. (17)), the

continuity principle for flow in the centrifuge (Eq. (19))
can be expressed as:

3 (k(w) 8w _ 30
0Zm \ & 0Zm ot

For a homogeneous saturated medium that does not
undergo volume changes with time, considering that
steady-state condition has been reached, and using the
fluid potential stated in Eq. (16), the governing equation
(Eq. (20)) can be expressed as:

8 [_ksal Zm)_a!//m):|zo

19

(20)
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where kg, is the saturated hydraulic conductivity. Rear-
ranging the terms, Eq. (21) can be expressed as:
FYm _
073

— p? (22)

In an unsaturated flow problem, the governing
equation (Eq. (20)) is based on the same assumptions as
Richards’ equation (Eq. (10)). The derivative 46/9¢ in
Eq. (20) equals zero if the unsaturated medium does not
undergo volume changes with time and the seepage
regime has reached steady-state. In this case, the con-
tinuity principle can be expressed as:

A | _kw 2 _0ym)\ | _
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Equation (23) describes the one-dimensional, steady-
state flow through unsaturated soils under an increased
gravitational field. By further developing Eq. (23),
steady-state unsaturated flow in the centrifuge can also be
expressed as:

(23)
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SUCTION PROFILES FOR STEADY-STATE
UNSATURATED FLOW

Suction Profiles for Unsaturated Flow in a Prototype
The suction profile in a prototype is obtained herein by
solving the equations governing unsaturated flow through
a soil having a generic k-function. The boundary condi-
tions considered for the problem are an imposed suction,
Wop, at the base of the prototype (i.e. at z,=0) and an

imposed discharge velocity, v,, at the top of the proto-
type. Since the problem is solved for steady-state
conditions, v, is constant for the entire prototype length,
L,. Although the hydraulic conductivity varies along the
length of the soil sample, it does not vary with time.
Consequently, the k-function can also be expressed as a
function of z,. The suction gradient can be defined from
the equation for discharge velocity (Eq. (6)), as:

Yo _ Pw8Up
9z,  k(y)

For the particular case of saturated flow, the hydraulic
conductivity of the soil is constant (i.e. k(w)=ks). In
this case, integrating Eq. (25), and considering that the
integration constant can be defined using the boundary

trug 25)

conditions (i.e. ¥, =wo, at z,=0), the suction profile is
defined by:
Pw8Y
Vo=pugZot " "2t Yoo (26)
sat

For a generic unsaturated flow problem, integration of
Eq. (25) for a generic coordinate z, leads to:

Vo = Pw8Z + PugUK(2p) +C 27

where C is the integration constant and K,(z,) is the -
function factor for the prototype, which is defined as
(Dell’Avanzi and Zornberg, 2002a):

2p

Kol = S K

As for the saturated case, the integration constant can
be defined using the boundary conditions of the problem.
Considering that at z,=0 the suction equals v, and the
k-function factor equals zero (i.e. K,(0)=0), then C=
Wo,p. Consequently, the suction profile in a prototype with
a generic k-function is given by the following solution:

W= Pw8 T+ Pu8Vp K (Zp) + Wop (29)

The k-function factor (Eq. (28)) can be redefined as
follows:

(28)

Ve

1 dz
Ky(zp) = S g
#(2) k(y) dy, Wy

Yop
The inverse of the suction gradient can be obtained
from Eq. (5), leading to:

(30)

Wp
1 S dw,

Bolz) pwg Vvt k(y)

Yo
The k-function factor K,(z,) can be defined for any
k-function in the form A(y). Integration in Eq. (31) can
be performed either analytically or numerically depend-
ing on the k-function used in a given problem. The
analytic determination of the k-function factor is illus-
trated herein using the k-function proposed by Gardner

(1958), which is defined as:

k(y) = ke

€2))

(32
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Fig. 3. Suction profiles for unsaturated flow in a prototype

where e is the natural base of logarithms, and « is an
exponential parameter. The advantage of adopting the
k-function defined by Eq. (32) is that analytical solutions
can be easily obtained for transient (Srivastava and Yet,
1991) and steady state flow conditions (Gardner, 1958).
The k-function factor (Eq. (31)) for Gardner’s k-function

can be obtained analytically as (Dell’Avanzi and
Zornberg, 2002b):
:p +e
Ki(2)= a(wy = Yop) +In—————1  (33)
ap«8up P | p-ava
P4 o ave,
kSa[
The suction profile in a prototype, considering

Gardner’s k-function, can then be obtained by substitut-
ing Eq. (33) into Eq. (29). After rearranging the terms,
the suction profile is defined as:

Vo= — Lo (o0 100/t + et ~apugzyy _ Vo
a Ksar

if (ﬂ n e-“%») >0 (34a)

sat

Wo=— 1 In [ = e 1Ga/ka) +eoroel ~apugz,) _ Up.
a ksat

if (ﬁ + e-%) <0 (34b)
sat

Figure 3 shows the suction profiles obtained in a 2m
long prototype for varying values of discharge velocities.
This analysis considered that the water level is positioned
at the base (i.e. o, =0), and that Gardner’s parameter a
equals 1 kPa~!. The value of 1 kPa™' for parameter a is
within the range of values reported in the technical litera-
ture (Choo and Yanful, 2000) for homogeneous soils. A
parametric evaluation conducted using values of @ rang-
ing from 0.5 to 2.5 kPa™! leads to similar observations to
those reported herein for a=1kPa~'. The results shown
in the figure indicate that part of the soil sample is under
approximately zero suction gradient (i.e. approximately
unity total gradient). The imposed discharge velocity
defines the suction magnitude in the upper region of the

model, where the suction is approximately constant.
From Eq. (34a), it can be shown that:

= ® Ksat (35)
Inspection of Eq (35) and of the results in Fig. 3 indi-
cate that the magnitude of the suction obtained towards
the surface of the prototype for a sufficiently large proto-
type length depends only on the imposed discharge veloc-
ity and the soil k-function, but it is independent of the
suction imposed at the base of the prototype.

1
lim ¥p= Wimp= -—;ln (—&>

Suction Profiles for Unsaturated Flow in a Centrifuge
Model

The suction profile in a centrifuge model is obtained
herein by solving the equations governing unsaturated
flow through a soil having a generic k-function. The
boundary conditions considered for the problem are an
imposed suction, yon, at the base of the model (i.e. at z,
=0) and an imposed discharge velocity, v, at the top of
the model. Since the problem is solved for steady-state
conditions, vy, is constant for the entire model length, L.
The suction gradient can be defined from the equation for
discharge velocity (Eq. (18)) as follows:

W _Pugn
0Zm  k(w)

For the particular case of saturated flow, the hydraulic
conductivity of the soil is constant (i.e. k(y)=ku). In
this case, integrating Eq. (36), and considering that the
integration constant can be defined using the boundary
condition (i.e. Wn=Wom at z,=0), the suction profile is
defined by:

+ P o — P’ T (36)

(37

Zm Pw8Vm
) + Zmt Yo,m

m= wa)zZm rv——~—
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For a generic unsaturated flow problem in the cen-
trifuge, integration of Eq. (36) for a generic coordinate z.,
leads to:

2 Zm ’
Vin=PuZn®@’ (F0= + pugUmKn(zZm) +C (38)

where C’ is the integration constant and K(zn) is the
k-function factor for the model, which is defined as:

Zm

Ko(zm) = S

0
The integration constant can be defined using the
boundary conditions of the problem. Considering that at
Zm =0 the suction equals yo, and the k-function factor
equals zero (Kn(0)=0), then C’ = ;.. Consequently, the
suction profile in a model with a generic k-function is
given by the following solution:

1
_ d m
k) (39)

Zm
Ym =pwzmw2 <r0 - 2) +pngme(Zm) + Yo,m (40)

The k-function factor (Eq. (39)) can be redefined as
follows:
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Fig. 4. Suction profiles for unsaturated flow in a centrifuge model
(Note. NV, is defined as the acceleration ratio at the center of the
model (z,,=L,,/2))
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The inverse of the suction gradient can be obtained
from Eq. (18), leading to:

(41)

m

dy,

=
WNI' vm
sl - (ﬁfk(w))

Kin(zm) = 42)

As previously mentioned, the k-function factor (Eq.
(42)) can be defined for any k-function in the form k(y).
For example, adopting Gardner’s k-function (Eq. (32)),
the k-function factor can be obtained analytically as
(Dell’Avanzi and Zornberg, 2002):

—+ e—ﬂll/m
Nr sat

a v a(l//m - WO,m) +1In 07 N
pr m } m +e*ﬂllln,m

Nr sat

1 vm

Km(Zm) =

(43)

The suction profile in a centrifuge model, considering
Gardner’s k-function, can then be obtained by substitut-
ing Eq. (43) into Eq. (40). After rearranging the terms,
the suction profile is defined as:

1 v
I (10 |0/ Nk + €™ %ol = apy Zn(ro=2m/2)) — ™
Yn=——Inle
Nr ksat
. Um —a
if +e ™) >0  (442)
Nrksat
Wm= _l In | — @in 1om/Niks+ e evon] —apyzme™ro=2m/2)) _m_
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Nrksal
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if +eWwn| <0 (44
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Figure 4 shows the suction profiles obtained in a 0.1 m
long model for varying values of acceleration ratio V..
This analysis considered that the water level is positioned
at the model base (i.e. won=0), that Gardner’s parameter
a equals 1 kPa~! and that the constant discharge velocity

equals —0.8k.,. The results shown in the figure indicate
that increasing acceleration ratios induce a gradual
change in the suction profile. Beyond a certain accelera-
tion ratio, the suction gradient becomes negligible
towards the top of the model. The imposed discharge
velocity defines the suction magnitude in the upper
portion of the model, where the suction is approximately
constant. From Eq. (44a), it can be shown that:

lim Yo = Wimm = — (45)

Inspection of Eq. (45) and of the results in Fig. 4 indi-
cate that the magnitude of suction obtained towards the
surface of the model for a sufficiently large model length
depends on the imposed discharge velocity, the soil k-
function, and the acceleration ratio, but it is independent
of the suction imposed at the base of the model.

SCALE FACTORS

Scale factors relating variables in a model with their
equivalent in a prototype should be defined in order to
infer the response of a prototype based on the monitored
response of a reduced scale model. The prototype and
model are assumed to be composed of the same material
and permeated by the fluids with same density. Geometric
similarity requires a constant length ratio between
homologous points in the model and prototype. That is:

Zp=Zm (46)

where o, is the geometric scale factor.

Similarity in an unsaturated flow problem requires
that, in addition to geometric similarity, the suction and
discharge velocity in model and prototype be related by
constant scale factors. That is:

(47)
(48)

where o, and o, are the scale factors for suction and
discharge velocity, respectively.

The scale factors for suction and discharge velocity are
expected to be related to the geometric scale factor «, and
the acceleration ratio NV;. Substituting Eqgs. (46), (47) and
(48) into the suction profile solution for a prototype with
a generic k-function (Eq. (29)) leads to:

Vp=0yYm

Up = OyUn

1
Wn=—[pwg0uZnm + pugon v Kp(2p) + O‘WV/O.m] 49)

oy
The suction profile solution in a centrifuge model with
a generic k-function for unsaturated steady-state flow

(Eq. (40)) can be rearranged as:
Wm=PwEN:Zm X + Pw&UmKin(Zm) + Wom (50)

where y is the uniformity factor of the acceleration field,
defined as:

Zm/To
2(1—2znm /ro)
describes

x=1+ (51)

The uniformity factor the geometric
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Fig. 5. Uniformity factor x in a centrifuge model

conformance between model and centrifuge equipment.
Figure 5 illustrates the sensitivity of the uniformity factor
x to the ratio between the centrifuge arm length and the
model length (ro/Ly). The results are presented for zp
equal to zero, L,/2, and L, (i.e. for the base, center, and
top of the model). As shown in the figure, the uniformity
factor equals one at the location where the suction is
imposed (i.e. at z,=0). The figure also shows that, for
model of sufficiently small size (e.g. ro/L., larger than 10),
the uniformity factor equals approximately one for any
location within the model.

By equating the expressions for suction defined by Eqgs.
(49) and (50), the scale factor o, is obtained as:

o, = eZm + o UmKp(2p)
Y NezZmX + 0mKn(Zm)

Consistent with experimental results presented by
Nimmo et al. (1987), the k-function of the soil is assumed
to be independent of the applied g-level. Consequently,
the relationship between the k-function factors for model
and prototype (i.e. between K,(z.) and K,(z,)) can be
obtained by substituting the geometric scale factor (Eq.
(47)) into Eq. (39), as follows:

(52)

Zp

Kn(Zm) =alz 5 ;(11/7) dz, (53)

Substituting Eq. (28) into Eq. (53):
Km(zm)=aizl(p(zp) 54)

Substituting Eq. (54) into Eq. (52):
_ %Zm + 0 Un 0 Kn(Zm) (55

N Noxzm + vmK(Zm)

The discharge velocity in the model can be obtained by
substituting Eqs. (46), (47) and (48) into the equation for
discharge velocity in the prototype (Eq. (5)):

k m
avpwg o 0Zm

By equating the discharge velocity expressions defined
by Egs. (56) and (18), the scale factor «, is obtained as:
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Fig. 6. Suction scale factor as a function of the ratio centrifuge radius/
model length

(7

Substituting Eq. (57) into Eq. (55), using Eqgs. (14) and
(18) in the resulting expression, and rearranging leads to
the following suction scale factor:

Zm
O ———— Olsz(Zm)
oy = k(y) (58)

Zm
Ny kW) N:K(2m)

Inspection of Eq. (58) indicates that the suction scale
factor is a function of the geometric scale factor o, the
acceleration ratio NV;, and the uniformity factor y.

If the length of the centrifuge arm is significantly large
than the model length, N, is approximately constant
throughout the model. That is:

N,=N

(59

where N is a constant acceleration ratio representative of
the entire centrifuge model.

It has been common practice in geotechnical modelling
to specify the geometric scale factor, o, as equal to the
average acceleration ratio N (e.g. Cargill and Ko, 1983).
In this case:

a,=N (60)
Introducing Eqs. (59) and (60) into Eq. (58):
Zm
= Kn(zm)
k
= 61)
_m—Km Zm
Fieyy )

Figure 6 illustrates the sensitivity of o, as a function of
the ratio between centrifuge arm length and model length
(ro/Lw). The results are presented for z, equal to zero,
L./2, and L,. The results were obtained using the k-
function and boundary conditions used in Fig. 4 for the
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curve obtained using N,=20. Parametric evaluations
indicated that the results shown in Fig. 6 are not very
sensitive to the k-function and boundary conditions when
ro/L is comparatively large. As observed in the figure,
the suction scale factor equals approximately one for
sufficiently large ro/L,, ratios (e.g. ro/Ly > 10, which leads
to y =1 as shown in Fig. 5). Consequently, if the ratio ro/
L, is sufficiently large, the uniformity factor is approxi-
mately 1.0, and Eq. (61) becomes:

(62)

a,=1

If the ratio ry/Ly is sufficiently large, the discharge

velocity scale factor for unsaturated flow can be obtained

by substituting Egs. (59), (60) and (62) into Eq. (57),
leading to:

(63)

Oy =

N

which shows that for sufficiently large ro/L, ratios (e.g.

ratios larger than 10), the discharge velocity for unsatu-

rated flow in the prototype scales by 1/N with respect to
that in the model.

Inspection of Figs. 2 and 3 indicates that the suction
profile obtained for a 2 m long prototype with v,/ks =
—0.04 is the same as that obtained for a 0.1 m long
model with N=20 and vn/k..= —0.8. This is consistent
with scale factors defined by Eqgs. (60), (62) and (63) (i.e.
o, =20, o, =1, and o, =1/20).

The flow rate in the model, Qp, is defined as:

On=0nAn (64)

where A,, is the model cross-sectional area. Substituting
the scale factors for discharge velocity (Eq. (63)) and
length (Eq. (46)) into Eq. (64):

1
Qm=vaﬁAp

(65)

Noting that the expression v,4, in Eq. (65) is the
prototype flow rate Q,, the scale factor for flow rate, ag,
can then be obtained as:

ao=QB=N

On
The transit time required for water to travel from top
to bottom of mode, #,, is defined as:
Ly

tn= o /n | 67)

(66)

If the same soil is used in the model and the prototype,
their porosities are the same. Consequently, substituting
the scale factors for discharge velocity (Eq. (63)) and for
length (Eq. (46)) into Eq. (67):

1 nL,
ta= 5"

N* v
Noting that the expression nL,/v, in Eq. (68) is the

prototype transit time, #,, the time scale factor, o, can
then be obtained as:

(68)

4

: (69)

The scale factors governing unsaturated flow under in-
creased gravitational field were shown to emerge directly
from the comparison of analytical solutions, without the
need of relying on dimensional analysis concepts.
Although past studies that avoided the use of dimen-
sional analysis have often led to different results, the scale
factors obtained herein are in agreement with those
obtained using dimensional analysis concepts.

ADDITIONAL CONSIDERATIONS

Solution of the governing equations for unsaturated
flow led to the determination of scale factors for suction,
discharge velocity, flow rate, and time, which are relevant
in centrifuge testing programs aimed at evaluating the
behaviour of full-scale prototypes. In addition, analysis
of the suction profiles for unsaturated flow is relevant in
centrifuge testing programs aimed at determination of
the soil unsaturated hydraulic conductivity. Centrifuge
testing represents an appealing alternative to convention-
al techniques for direct measurement of unsaturated
hydraulic conductivity. This is not only because the time
required to achieve steady-state is significantly minimized
(e.g. Nimmo et al., 1987; Conca and Wright, 1990), but
also because the centrifuge testing setup may be op-
timised to obtain suction profiles that are particularly
suitable for experimental measurements. Analysis of the
suction profiles under an increased gravitational field is
presented herein using the k-function proposed by
Gardner (1958). As shown in Fig. 4, which illustrates the
influence of the acceleration ratio on the suction profile
obtained for a test performed using a constant discharge
velocity, the suction profile shows an approximately
constant value towards the top of the specimen beyond a
certain acceleration ratio (N, approximately 20 in this
case).

The length zs,, within a centrifuge model where the
suction equals a certain percentage, , of the limit suction
(Eq. (45)) can be estimated using Eq. (44). That is the
coordinate zg , at which = 8. Wim,m can be estimated as
follows (for the conditions for which Eq. (44a) is valid):

1 N e
Zpm= In = 5 (70)
apwgN:x Um . Um
Nrksal Nrksal

For a percentage f sufficiently high (e.g. 99%), the
length (L, — zp.m) represents the portion of the centrifuge
model over which the suction gradient is negligible. For
example, the limit suction defined by Eq. (45) for the
suction profile shown in Fig. 4 using N, =20 equals Wimm
=3.22 kPa. For a value $=0.99, the length ratio (zsm/
L) estimated using Eq. (70) equals 0.33. That is, as can
be observed in Fig. 4, 66% of the model length has a
negligible suction gradient (i.e. an approximately con-
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Fig. 7. Influence of the discharge velocity on the suction profiles in a

centrifuge model

stant suction value). The existence of a portion of the
suction profile with negligible suction gradient under
steady-state constitutes a favourable condition for the
determination of the unsaturated hydraulic conductivity.
This is not only because this profile can be achieved
within a relatively short period of time, but also because
experimental measurement of suction in this region is not
significantly affected by the precise location of the suction
measurement device. Equation (71) can also be used to
define the length of the specimen so that a minimum
portion of its length has an approximately constant suc-
tion value at a given acceleration ratio.

The experimentally measured suction value can be used
to estimate an unsaturated hydraulic conductivity value
in order to define points of the soil k-function. For the
suction measured along the portion of the specimen with
negligible suction gradient, the corresponding unsaturat-
ed hydraulic conductivity can be obtained directly from
the imposed discharge velocity, v,, by considering a
negligible suction gradient in Eq. (18). That is, the un-
saturated hydraulic conductivity associated to the meas-
ured suction value can be determined by:

k)=~ -7

Nr

Figure 7 shows the influence of varying values of
imposed discharge velocity, v,, on the suction profiles
obtained for a constant suction imposed at the base of the
specimen (yo =6 kPa in this case). As shown in the
figure, a different value of approximately constant suc-
tion is obtained for varying discharge velocity values.
Consequently, different points of the soil k-function can
be obtained by simply imposing different discharge veloc-
ities, which will lead to different hydraulic conductivity
values estimated using Eq. (71). Figure 8 shows the
influence on the suction profiles obtained as a function of
the suction imposed at the base of the model, y, ., for a
constant value of imposed discharge velocity. As shown
in the figure, the value of the approximately constant
suction obtained towards the top of the specimen is
independent of the imposed suction at the base of the
model. The trends observed in these analytical results are

(71)

1.0

0.9
0.8 Vlkoy =-0.8 N, =20
0.7
06
~lS
N 05
¥ 041
034
02 0kPa 2kPa )
o \ ) -4KkPa kaa
00 . e .
0 1 2 3 4 5 6 7
Suction (kPa)
Fig. 8. Influence of the suction imposed at the base of the sample on

the suction profiles in a centrifuge model
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Fig. 9. Influence of sample length on the suction profiles in a cen-
trifuge model

in agreement with data reported by Nimmo et al. (1987,
1992). Figure 9 shows the influence of the specimen length
on the suction profile obtained considering N=20,
discharge velocity vy, = —0.01k,, and a suction wo,=
0 kPa imposed at the base of the model. The obtained
suction profiles indicate that a well-defined region of
negligible suction gradient can be obtained for compara-
tively large specimens in relation to the centrifuge arm
length. That is, while comparatively small specimens are
desirable if the objective of centrifuge testing is to simu-
late the behavior of full-scale prototypes, comparatively
large specimens are desirable if the objective of centrifuge
testing is to determine the soil unsaturated hydraulic
conductivity.

CONCLUSIONS

A consistent framework was developed for analytic
determination of suction profiles for steady-state unsatu-
rated flow under both natural and increased gravitational
fields. Since Buckingham’s ‘Pi’ theorem provides neces-
sary, but not sufficient conditions for solution of a prob-
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lem, an important objective of this study was to define
the scale factors governing unsaturated centrifuge water
flow without adopting dimensional analysis concepts.
The differential equations governing unsaturated flow
were deduced assuming the validity of Darcy’s law and of
Richards’ equation, no volume changes within the soil,
and the independence of the soil k-function with in-
creased gravitational fields. While the study of scale
factors was made for a generic k-function, the k-function
proposed by Gardner (1958) was also used to evaluate the
sensitivity of the suction profiles to different boundary
conditions. The main conclusions drawn from this
investigation are:

(@) The scale factors governing unsaturated flow under
increased gravitational field emerge directly from
comparison of analytical solutions, without the
need of relying on dimensional analysis concepts.
These scale factors are independent of the k-func-
tion selected to represent the soil unsaturated
hydraulic conductivity.

(b) For conditions leading to an approximately uniform
acceleration field, the suction profile in the proto-
type is found to be the same as that in the model,
while the discharge velocity is found to be properly
scaled by 1/N, the flow rate by N, and the time by
N?. These scale factors, obtained without using
dimensional analysis, are consistent with those
obtained in past studies using dimensionless groups.

(¢) For conditions leading to a non-uniform accelera-
tion field, the scale factors governing centrifuge un-
saturated flow are no longer only a function of the
acceleration ratio, but also a function of the uni-
formity factor, which depends on the relative di-
mensions of centrifuge arm and model length.

(d) Adequate centrifuge testing setup allows control of
the suction profile to be induced within the model.
In particular, the portion of the model length over
which the suction. gradient is negligible can be
estimated. If the objective of centrifuge testing is the
determination of the soil unsaturated hydraulic
conductivity, comparatively large specimens (in
relation to the centrifuge arm length) are desirable.
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NOTATION

a: Exponential parameter in Gardner (1958) k-func-
tion

a.: Centrifugal acceleration

A: Cross section area

e: Natural base of logarithms

Acceleration of gravity

Hydraulic conductivity

Saturated hydraulic conductivity

Length

Soil porosity

Constant acceleration ratio

Acceleration ratio

Flow rate

Centrifuge radius

ry:  Distance from the centrifuge axis to the origin of
coordinate system z,,

t: Time

v: Discharge velocity

z: Coordinate

Suction, discharge velocity, flow rate, time, and

geometric scale factors

Factor of proportionality

Uniformity factor

k-function factor

Density

Suction

Suction at the base of the centrifuge model and

prototype

&: Fluid potential

w: Angular velocity

r
£ o

Oy Oy, Oy Oy Ot

SR ART

Yo,m» Yo,p-

Subscripts
m: Model
p: Prototype
w: Water
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