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ABSTRACT: Although scaling laws for centrifuge modeling of unsaturated water flow have been investigated in
the past, some controversial issues still remain unclear. In order to provide insight on the mechanics governing the
flow of water under an increased gravitational field, a consistent framework for centrifuge modeling of saturated
and unsaturated water flow is presented in this paper. To this effect, the solution of the governing equations for
the model and prototype are analyzed in order to infer the flow scale factors. Specifically, the governing equations
for centrifuge flow in a permeameter are deduced and compared to the vertical 1g case. The unsaturated flow rate
in the model is found to be properly scaled by 1/N and time is scaled by N 2 where N is the ratio between the

centrifuge and the gravitational accelerations.

1 INTRODUCTION

Working with an inherently variable material, the
geotechnical engineer usually estimates the margin of
safety of geotechnical structures based only on ana-
Iytic soil-prototype behavioral models. Sometimes, the
uncertainties involved in the analysis prompt the engi-
neer’ to search physical methods for prediction the
prototype’s behavior. Centrifuge modeling represents a
feasible alternative method since the stress level devel-
oped within the model equals that in the prototype, the
cost of testing is comparatively small, and the long-term
behavior of the geotechnical model can be predicted in
reduced time frames.

The main objectives of centrifuge testing are the
investigation of the behavior of prototypes, the inves-
tigation of new phenomena, the parametric study of
uncommon scenarios, and the validation of numerical
methods. Measurement of soil hydraulic conductivity
has also been conducted using a centrifuge facility as
a laboratory tool, In this case, high hydraulic gradi-
ents can be induced and a homogeneous stress field can
be induced in soil specimens. Ko (1988) notes that the
inference of prototype behavior has been the most com-
mon application of centrifuge testing. This technique is
normally referred as prototype modeling and it is usu-
ally accurate in situations controlled by body forces.
Assessment of analytic tools (e.g. limit equilibrium)
using centrifuge modeling has been useful for validation
purposes (Zornberg et al. 1997).

Centrifuge flow modeling has received increased
interest, particularly regarding the assessment of unsat-
urated flow. Therefore, the main objective of the paper

is to present a consistent framework of the theory of
saturated and unsaturated water flow under a centrifu-
gal field. When compared with a vertical 1g test, the
framework is suitable for deduction of the scale factors
that govern the relationship between a prototype and a
reduced model. ;

2 BACKGROUND

Basic concepts regarding unsaturated soil behavior and

- centrifuge modeling are reviewed in this section. Cou-

pling of centrifuge modeling concepts and unsaturated
soil properties evaluation is then provided to eval-
uate the laws governing the centrifuge modeling of
unsaturated water flow.

2.1 Unsaturated flow concepts

Fredlund & Rahardjo (1993) describe the unsaturated
soil as a four-phase material in which the meniscus
surface acts as a fourth phase. The meniscus surface
phase induces tensile forces that contribute to soil
inter-particles attraction.

The effect of suction on the soil shear strength are
controlled by the total suction () of the soil mass.
The total suction can be defined as the sum of the
matric suction (related to the meniscus effect) and the
osmotic suction. The matric suction plays an important
role in situations where the soil degree of saturation
can vary widely as the case of unsaturated water flow.
Since matric suction is related to body forces, its mag-
nitude will be affected when a model is accelerated in a
centrifuge apparatus. The osmotic suction, on the other
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way, is related to the ion concentration in the soil mass.
It is related to diffusion and adsorption processes that
occur among ions, water molecules, and soil particles.
Osmotic processes are independent of the body force
and, consequently, their magnitude will not be affected
when a model is accelerated in a centrifuge facility.
For the purpose of this study, the magnitude of osmotic
suction will be considerably negligible.

The soil-matric suction relationship is defined by the
characteristic curve of the soil. The relationship between
unsaturated hydraulic conductivity and suction is com-
monly defined by the hydraulic conductivity function
of the soil. The characteristic curve and the hydraulic
conductivity function typically show hysteresis (i.e. dif-
ferent drying and wetting paths). Hysteresis has been
explained by different air flow patterns during these two
processes. The hydraulic conductivity function has been
described by mathematical models, such as those pro-
posed by Mualem (1976), Van Genuchen (1981) and
Fredlund & Xing (1994).

2.2 Centrifuge modeling concepts

Scale factors relating model and prototype must be
defined in order to infer the response of prototypes based
on the monitored response of reduced scale models. The
model should be similar in geometric, kinematic, and
dynamic aspects. Similitude aspects have been generally
defined by Buckingham’s I theorem or by inspection
of the governing equations of the phenomenon consid-
ered (Cargill & Ko 1983). Scale factors that have been
typically adopted for centrifuge modeling are given in
Table 1 (Ko 1988). They have been derived based on
the assumption that both prototype and model have the
same material characteristics.

It is important to note that, depending on the phe-
nomenon considered, the time scale factor can differ.
The differences can be explained by the different differ-
ential equations that govern the various phenomena. For
example, the time scale factor for consolidation (based
on the diffusion equation) is different from the time
scaling factor for steady-state flow (based on Laplace’s
equation).

Validation of the scale factors has been typically made
by direct comparison between prototype and model
responses, or, in the absence of monitored prototype, by
adopting the modeling of models technique (Ko 1988).

Regarding flow modeling, the scale factors in Table 1
are for the case in which the soil sample does not show
volumetric changes in response to stress level increases.
If volumetric changes occur, the soil hydraulic conduc-
tivity will change during the flow process, invalidating
the scale factors (i.e. the model’s hydraulic conductivity
will be different from the prototype’s).

2.3 Discharge velocity under 1 g gravity level

Figure 1 shows a schematic representation of 1D
flow through a control volume under vertical 1 g and

Table 1. Scale factors for centrifuge modeling

(adapted from Ko 1988).

Quantity Prototype/model
Length N
Area N?
Volume N3
Velocity 1
Acceleration /N
Mass N3
Force N?
Energy N?
Stress 1
Strain - 1
Mass density 1
Energy density 1
Time (dynamic) N
Time (creep) 1
Time (diffusion) N?
Frequency - UN
Pressure 1
Flow velocity /N
Flow quantity N
Head N
Capillary rise N

(a) Prototype

(b) Scaled Model

Figure 1. Flow patterns for vertical 1 g and centrifugal flow.
centrifugal acceleration. In both cases, the flow pat-
tern is governed by a flow potential (®) i.e. the energy
per unit mass of fluid. The flow potential, described
by Bernoulli’s equation, for the 1 g case is defined by
(Cherry & Freeze 1979):

2

v P
d=gz+ 2+ 1
gty +o 1

where g denotes the gravity acceleration, z the eleva-
tion, v, the seepage velocity, p the pressure and p,, the
fluid density.

The first two terms on Bernoulli’s equation are the
potential and the kinetic energy of the fluid. The third
term corresponds to the work done on the fluid by pres-
sure variations. Since the seepage velocity within the
soil mass is comparatively low, the second term is gener-
ally disregarded. The relationship among the total head
(h), the elevation head (z) and the pressure heads (h,) is
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obtained dividing Equation (1) by g. Combining the total
head relationship with Darcy’s equation (assumed valid
under unsaturated conditions) and considering that suc-
tion equals —y,/,, the discharge velocity is expressed

@

where v, is the discharge velocity in the prototype,
k() is the hydraulic conductivity of the soil for a total
suction .

2.4 Discharge velocity under a centrifugal field

The gravitational field in a centrifuge is related to the
centrifugal acceleration (a.) as follows:

4, = @°rm = Ng 3)

where w and 7,, are the angular velocity and the aver-
age radial distance. Considering the control volume in
Figure 1b, it can be observed that the induced grav-
itational field varies along the radial flow path of an
incompressible fluid. The flow potential in this case is
given by

= 4)

The flow potential stated by Equation (4) is the
Bernoulli’s equation for a centrifugal field. Also in this
case, the seepage velocity can be disregarded. However,
this implies that no turbulent flow occurs during cen-
trifuge testing. In other words, the Reynolds’ numbers
of prototype and model should be similar.

Expressing Darcy’s law in terms of flow potential,
the discharge velocity is given by

v, = _k(#’) (wazrm _ E) (5)
0z

w m

where v, is the discharge velocity in the model, y,, is the
water unit weight and  is the total suction. The term
9y /dz,, is the suction gradient acting through the soil
model. This formulation is similar to that proposed by
Nimmo et al. (1987, 1992) and Conca & Wright (1990)
to describe the flow density in an unsaturated soil sample
placed in a centrifuge.

3 FLOW GOVERNING EQUATIONS

Governing equations for flow in soils describing the
water or pollutants propagations, under saturated or
unsaturated conditions, are based on the principle of
continuity. Considering the control volume shown in
Figure 1a and assuming a constant volume of solids
through the flow process and an incompressible fluid,

the difference between the inflow and outflow equals the
water stored within the soil mass. Assuming the validity
of Darcy’s law, the continuity principle for 1g vertical
flow can be expressed as

3 dh 1\ '
— |k —|= —[Se 6

azp[ (@) az,,] (1 +e) 2> ©
where e is the void ratio, S is degree of saturation
and k (z,) is the hydraulic conductivity in the z, direc-
tion. Equation (6) describes flow under steady-state or
transient conditions in one direction.

3.1 Laplace’ equation

Assuming a homogeneous, isotropic, saturated medium,
the hydraulic conductivity becomes constant and can
be placed outside the derivative in Equation (6). Also,
assuming no volume changes, the derivatives de/dt
and 8S/dt equal zero. These hypotheses characterize
the steady-state saturated seepage. In this case, the
continuity principle is then expressed as

&h _
Bz; -

U

which is Laplace’s equation. For the specific case of a
permeameter, as depicted in Figure 1a, the solution in
terms of suction is

YwVp
B+ Yup ®

where v, is the suction at the upper boundary in the
permeameter, and y,, is the water unit weight at 1g.

Y¥(zp) = Ywzp —

3.2 Richards’equation

Richards (1931) developed a framework for water flow
in unsaturated soils. The main assumptions are that
the air phase is free to flow through the soil, the
hydraulic conductivity can be described by the suc-
tion, Darcy’s law is valid, and the material is isotropic.
Richards’ equation for unsaturated steady-state flow can
be expressed as

P, B[1/kW)] 0¥
2w % ©

The solution of Equation (9) for the permeameter
shown in Figure 1a is

¥(zp) = Ywzp — Yw¥p * @p(?'f, z,) + Yop (10)
where the term ©,(1, z,) equals

Zp l
052 = [ pezsta an

Z0p

Considering the case of zero flow rate Equation (10)
equals

V(2p) = Ywzp + Vop (12)
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3.3 Governing equation for saturated steady-state
centrifugal flow

The governing equation for a centrifugal flow can be
deduced by using the Darcy’s law (Eq. (5)), the principle
of continuity and assuming a saturated homogeneous
and isotropic medium. In this case

Py,
az =

13)
Considering the permeameter shown in Figure 1b at
steady state, the solution is given by

v -
V(zm) = pwwzr mZm — ik_yr‘zm + Yom

(14)

Differently than for Laplace’s equation solution,
Equation (14) shows that the suction pattern in a cen-
trifuge is controlled by a function of the angular velocity
and the average radial distance.

3.4 Governing equation for unsaturated
steady-state centrifugal flow

The governing equation for unsaturated centrifugal flow
is based on the same assumptions as Richards’ equation.
Steady state is reached during centrifugation if the fol-
lowing two conditions are met. First, the sample volume
must be constant through the process (i.e. de(yr) / ot =
0). This implies that the soil sample does not swell or
contract under an induced gravitational field. Second,
the suction profile becomes constant through the soil
sample. The governing equation can be expressed as

Py o[1/k(w)] 8y )
E =V yw—aw E +,0w€9 (15)

Similar to the solution of Richards’ equation, the
solution of Equation (15) involves an iterative process
since the hydraulic conductivity is a function of the
suction. For the permeameter in Figure 1b and consid-
ering the average radial distance (r,,) the solution can
be expressed as

(16)

where the term ©,,(¥, z,,) is the integral of the inverse
of the hydraulic conductivity function along model’s
length, and 1o is the suction on the top boundary. For
zero flow rate, Equation (16) becomes

"Jf’(zm) = pwwzrmzm = YwVm - Om(¥,2m) + Yom

'fo(zm) = pwwzrmzm + Yom 17)

The suction profile through the specimen can then
be obtained using the characteristic curve and hydraulic
conductivity function of soil sampled and the imposed
boundary conditions.

4 SCALE FACTORS

The study of the unsaturated flow pattern in scaled mod-
els is one of the main objectives of centrifuge modeling,
In this case, the purpose is the inference about flow pat-
terns on a 1-, 2- or 3D scaled model, in order to provide
some insights about a prototype behavior (Cargill & Ko
1983).

Cargill & Ko (1983) and Butterfield (2001) present
the deduction of the scale factors for water flow based
on dimensional analysis. They concluded that flow rate
is scaled by NV and time is scaled by 1/N?. Cargill & Ko
(1983) also indicate that the scale factor for capillary
heightis 1/N.

Lord (1999) and Depountis et al. (2001) deduce the
scale factor for capillary head based on Poiseuille’s
model for capillary flow. Lord (1999) shows theoret-
ically that the capillary head is scaled by 1/N. Lord
(1999) also presents the scale factor for time as equal
to 1/N2. Depountis et al. (2001) observe that the scale
factors deduced based on Poiseuille’s model, scales
correctly the prototype behavior under a certain range
of g-levels.

Barry et al. (2001) by inspection of governing equa-
tion reached similar scale factors as presented by Cargill
& Ko (1983).

The framework presented herein evaluates the solu-
tion of the governing equation for a permeameter
under 1g (prototype) and under centrifugal accelera-
tion (model). The model’s governing equation solution
must contain implicitly the scale factors that exist in
respect to prototype. Therefore, considering the length
scale between model and prototype given by

(18)

and the respective boundary conditions in the model’s
governing equation solution, the scale factors can be
obtained.

zp = Nz,

4.1 Suction scale factor

The centrifuge test of unsaturated water flow is carried
out in two steps. The first step consists in the accelera-
tion of the model until the desired g-level without any
flow. The second step is characterized by the water flow
until steady state is reached. Therefore, Equation (17)
describes the suction initial state at the end of the first
step. Considering Equations (3), (18), and (17):

¥(zm) = vwzp + Yom (19)

Comparing Equations (19) and (12), it can be observed
that the suction profile in the prototype is the same as
that in the model under the condition of no flow if the
same boundary condition of prototype is imposed to the
model (Yom = Yop). That is,

Y(zm) = ¥(zp)

That is, the suction scale factor equals 1.

(20)
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If prototype and model are constituted of same
material, ®,(¥,z,) scales by 1/N with respect to
@, (¥, 2,)(Dell’ Avanzi & Zornberg 2001). Therefore,
- observing the scale factor for discharge velocity as
deduced ahead, and assuming prototype and model
constituted by the same material, Equation (20) is also
valid.

42 Unsaturated discharge velocity scale factor

From Equation (5) and considering the scaling for
length and suction stated in Equations (18) and
(20), the discharge velocity in the model can be
expressed as

ay

%,

R
Yw

» (pwwzr,,, —-N ) (20a)

Using Equation (3) and considering 1, = pyg:

Vm m—k(l{f)-N(l —-—1—%)

2
" (21)
Comparing Equations (2) and (21), it can be seen
that:

Vm = Ny, (22)
which shows that for unsaturated flow conditions the
model discharge velocity scales by N with respect
to the prototype discharge velocity. The result agrees
with Barry et al. (2001) for the case in which model

and prototype have the same material and same fluid
density.

4.3 Unsaturated flow rate scale factor

The model flow rate is given by

Omn = VmAm (23)
where A4, is the model’s cross section area (see
Fig. 1b). Observing that discharges velocities scale by
N (Eq. (18)) and areas scale by N? (see Table 1), the
flow rate scale factor is given by

On = Nvp ﬁiAp
0 (24)
m = Fp

which shows that for unsaturated flow conditions the
model flow rate scales by 1/N with respect to the proto-
type flow rate. The relationship presented by Equation
(20) is the same scale factor proposed by Barry et al.
(2001) for prototype and model composed by same
material.

Table 2. Scale factors for unsaturated water flow.

Quantity Prototype/model
Unsaturated flow rate N
Unsaturated discharge velocity 1/N

Time (unsaturated flow) 1/N?

4.4 Time scale factor

The time required for a tracer (or a water particle) to
travel from top to bottom of model is given by

nL
= (25)

Vm

where ¢, is the model’s time lag and » is the soil’s
porosity. If model and prototype have same material,
the porosities will be the same. Therefore, considering
the scale factor for discharge velocities (Eq. (18)) and
the relationship between model and prototype lengths
(L, = NLn), Equation (23) becomes equal to

1 nL,

e 5
n= N2 Vp (26)
Since the travel time in the prototype is defined by #, =
nL,/v,, the time scale factor is

1

b= Frp (27
which agrees with Lord (1999) and Barry et al. (2001).

A summary of the scale factors for unsaturated flow
parameters is presented in Table 2. These scale factors
are consistent with the results obtained by dimensional
analysis (Cargill & Ko 1983, Butterfield 2000) and by
inspection of governing equation (Lord 1999, Depountis
et al. 2001, Barry et al. 2001).

5 CONCLUSIONS

A consistent framework was developed in order to com-
pare lg vertical flow to Ng centrifugal flow under
saturated and unsaturated conditions. The governing
equations concerning saturated and unsaturated water
flow were deduced based on the principle of continuity.
While the saturated flow under 1g conditions is gov-
erned by Laplace’s equation, the saturated flow under
centrifuge conditions is governed by a differential equa-
tion which is a function of the angular acceleration. Also,
since the gravitational field varies along the sample in
a centrifuge test, different solutions were obtained for
the suction patterns concerning lg and Ng-level tests
respectively. The suction pattern in a 1g environment
varies linearly whereas in an Ng-level varies quadratic.

Scale factors between model and prototype were
derived based on the assumption that the solution of
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the governing equations for a permeameter in a cen-
trifuge apparatus can be used to evaluate the behavior
of a prototype.

The framework discussed herein was developed
based on three principal assumptions. First, prototype
and model have the same characteristic curve and same
hydraulic conductivity function. Second the character-
istic curve and hydraulic conductivity functions do not
change when the g-level is increased. Third, Darcy’s
law is valid under increased g-level. The scale factors
were deduced by solving the governing equation and
substitution of the model-prototype lengths ratio in the
respective governing equations. It can be concluded that
the unsaturated flow rate scales by 1/N, the discharge
velocity scales by Nand time scales by 1/N2.
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